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1 Introduction
Comparing outcomes across policy borders is a commonly used strategy for evaluating
place-based policies (Black, 1999; Bayer et al., 2007; Neumark & Kolko, 2010; Turner
et al., 2014; Chen et al., 2022). While such designs reduce the risk of bias from unobserv-
ables by selecting similar areas, they increase the likelihood of re-sorting spillovers from
treatment into control areas, since more comparable areas tend to be closer substitutes.
The presence of re-sorting as an equilibrium response to the policy violates the stable
unit treatment value assumption (SUTVA), making many commonly used estimators
inconsistent.1 For example, relocation of agents in response to place-based policies or
trade shocks can alter equilibrium prices in areas used as controls, biasing treatment ef-
fect estimates (Baum-Snow & Ferreira, 2015; Donaldson, 2015). Biases in price effects are
particularly relevant, as they constitute the basis for evaluating the efficiency of taxes
and subsidies, as well as for hedonic welfare analysis.

The purpose of this paper is to examine how re-sorting-induced SUTVA violations
affect the estimation of housing price effects in a Difference-in-Differences (DiD) frame-
work in the context of a place-based tax incentive. Using a general supply-and-demand
spatial framework, as in Allen and Arkolakis (2023), we decompose the DiD estimator
and derive a sufficient statistics formula to assess the bias (Saez, 2001; Chetty, 2009). We
provide practical guidelines for researchers dealing with potential SUTVA violations
due to re-sorting between treatment and control areas.

We begin by showing that, in the presence of re-sorting, the DiD estimator can be
decomposed into three effects. First, an “autarky effect” captures what would happen
to the treated area in isolation, absent relocation responses. Second, a “spillover-on-
switchers effect” captures the equilibrium changes in the treated area caused by agents
moving in or out. Third, a “contamination effect” reflects similar equilibrium adjust-
ments in control areas. It is this contamination term that introduces bias in the DiD
estimator, preventing it from accurately recovering the average treatment effect on the
treated (ATT).

By linearizing the general supply and demand model, we provide an analytical for-
mula that approximates the DiD estimate of introducing a housing supply subsidy in a
subset of neighborhoods. First, the formula shows that the DiD estimator is asymptoti-
cally biased except in the extreme cases of perfectly elastic supply or perfectly inelastic
demand in the control area. Second, it indicates the sign of the bias under mild economic
assumptions. Finally, it highlights that the relevance of the three effects in the DiD es-

1A few estimation techniques explicitly recognize the potential source of bias due to spatial spillovers,
but they may not be well suited to addressing re-sorting spillovers. The ring or donut approach assumes
that spillovers decline with distance and vanish beyond a certain threshold (Clarke, 2017; Butts, 2022).
This assumption is plausible for physical spillovers, such as pollution, but re-sorting spillovers may not
decay monotonically with distance or have a clear spatial cutoff. Another approach involves aggregating
spatial units to contain localized spillovers within broader treatment and control areas, but this method
cannot account for spillovers between those larger units (Feyrer et al., 2017; Huber & Steinmayr, 2021).
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timator depends on demand-side substitution patterns across neighborhoods and the
supply elasticities of those neighborhoods.

Our formula has implications for applied work. More similar areas tend to be closer
demand-side substitutes, making them more prone to contamination effects. This con-
tradicts the common DiD practice of selecting highly similar treatment and control
units, such as border comparisons or employing matching techniques (Neumark &
Kolko, 2010; Chen et al., 2022). Conditional on having parallel pre-trends, applied
researchers should prefer comparisons between less homogeneous areas when place-
based policies induce substantive re-sorting. Using simulations of a specific supply and
demand model, we show that in that model there is a trade-off between the parallel
trends assumption and the SUTVA. When control and treatment areas are very similar,
parallel trends hold more frequently, but contamination bias is more severe.

We apply these methodological insights to the study of a typical place-based pol-
icy that provides large tax breaks for housing development in lagging neighborhoods.
We focus on a major program implemented in Montevideo, the capital of Uruguay.
Our analysis begins by estimating a series of DiD regressions using administrative
data on the universe of housing transactions in the city. We estimate alternative DiD
specifications—including the border, ring, and aggregation approaches—comparing ar-
eas of varying similarity and, therefore, varying degrees of substitutability. We illus-
trate how heterogeneity analysis in DiD estimates can help detect bias. Under no signs
of bias—e.g., similar effects across units with varying susceptibility to spillovers—DiD
remains a viable identification strategy.

We document three heterogeneity patterns in our DiD estimates, all consistent with
the presence of SUTVA violations due to re-sorting. First, when following an aggre-
gation approach that uses all transactions in the city, we find a large negative effect of
the policy, equivalent to around 18% of the average transaction price. In contrast, using
only observations near the policy border yields very small negatives or zeros. Second,
the absolute magnitude of these border estimates increases with price differences across
different segments of the border, a proxy of substitutability. Third, estimates decrease
when control units are located farther from the border, as in the ring approach. Im-
portantly, we also show that these second and third patterns are inconsistent with our
results being explained by policy-induced changes in amenities.

When evidence of contamination emerges and the policy represents a marginal change,
our sufficient statistics formula allows researchers to approximate the bias. However, if
there are strong signs of contamination and the intervention is large, a structural model
becomes necessary to quantify the bias and recover the true policy effect. With this pur-
pose, we develop a structural model that allows us to calculate the incidence of the tax
break and benchmark the performance of the alternative reduced-form estimates.

We estimate a structural model of housing supply and demand across Montevideo’s
neighborhoods. Housing demand is modeled as a discrete choice over neighborhoods
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within a city (Bayer et al., 2007; Anagol et al., 2021; Almagro & Domınguez-Iino, 2025).
We assume a nested-logit structure and estimate the price elasticity using a set of supply-
shifting instruments generated by the tax break (Berry, 1994). Nests are formed by
grouping neighborhoods with similar socioeconomic composition, based on census data,
and validated using data on actual migration flows across neighborhoods. As in Adao et
al. (2019) and Borusyak et al. (2022), the model’s structure allows for consistent estima-
tion by including regression terms (i.e., the within-nest shares) that explicitly account
for spillovers. By explicitly accounting for spillovers and instrumenting for both the
price and nested-logit terms, this strategy complies with Allen and Arkolakis (2023)’s
gold standard for identification in spatial settings with spillovers. On the supply side,
each neighborhood has a separate log-linear supply function (Saiz, 2010; Baum-Snow &
Han, 2023). We use the model-free DiD estimate to calibrate a common inverse supply
elasticity for all neighborhoods by matching that estimate with its structural equivalent.
We show that our model fits the data well in terms of reproducing the parallel trends
observed in the pre-treatment period.

We exactly decompose the DiD estimate into the three effects by solving for counter-
factual equilibria of the estimated model. We find that the spillover-on-switchers effect
amounts to 40% of the autarky effect, while contamination represents 25% of the ATT.
This level of contamination implies that all reduced-form estimates substantially under-
estimate the share of the subsidy that reaches consumers, though to varying degrees,
and in a way that is consistent with our framework. The aggregation approach exhibits
the lowest bias and still underestimates the share of the subsidy that reaches consumers
by 20 percentage points (60% versus 80%). In absolute terms, this bias amounts to a
quarter of Uruguay’s GDP per capita. As noted above, a border estimate cannot rule
out the possibility that consumers did not benefit from the tax break. The ring approach
quantifies the incidence at 30%.

Finally, we use the model to compute counterfactual equilibria to revisit the relation-
ship we find in the reduced-form analysis between heterogeneity across control and
treated units and the magnitude of the DiD estimate. Consistent with our decompo-
sition formula, we confirm that contamination bias is negatively correlated with our
measure of heterogeneity between units and positively correlated with diversion ra-
tios. Importantly, this implies that the smaller absolute values of the reduced-form DiD
estimates obtained by comparing more homogeneous units are effectively driven by
contamination (i.e. greater bias) and not just regular treatment heterogeneity.

Related Literature. Our paper relates to four main strands of literature. First, we
contribute to the literature on causal inference in spatial settings by making explicit the
equilibrium nature of contamination and the trade-offs between comparability and con-
tamination. Our decomposition formula illustrates two types of assumptions that have
allowed consistent identification of the impact of place-based policies in the presence of
re-sorting spillovers. Either the shock is small and local, such that distant areas remain
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unaffected by re-sorting and one can employ the ring approach (Kline & Moretti, 2014;
Delgado & Florax, 2015; Clarke, 2017; Mayer & Trevien, 2017; Butts, 2023a) or units are
infinitesimal such that re-sorting does not affect prices and quantities in untreated areas
(Busso et al., 2013; Turner et al., 2014).2

Second, spatial re-sorting and its effects are at the heart of quantitative spatial mod-
els (Redding & Rossi-Hansberg, 2017). Previous work in this literature derives esti-
mating equations that explicitly incorporate spillover effects and yield consistent esti-
mates (Adao et al., 2019; Fu & Gregory, 2019; Borusyak et al., 2022; Rudik et al., 2022;
Hollingsworth et al., 2025).3 We follow the same approach to consistently estimate de-
mand in our model and use counterfactual equilibria to assess the bias in reduced-form
estimates and validate our approximation formula.

Third, we contribute to the general literature discussing identification under SUTVA
violations. Sobel (2006) showed that comparing means between treatment and control
under interference does not recover an ATT and instead yields the difference between
two effects. Vazquez-Bare (2023) decomposed that difference in means into the three
effects we study: the effect on the targeted group absent spillovers, spillovers on the
targeted group, and spillovers on the non-targeted group. This decomposition into three
terms was applied to the DiD context by Butts (2023a). We innovate on two fronts.
First, we characterize the three terms using supply and demand partials.4 Second, we
compute the three terms with a structural model in a context with no spillover-free
areas, which allows us to quantify the bias of different reduced-form estimators.

Fourth, beyond its methodological contribution, our paper contributes to the debate
on the effectiveness of supply-side housing interventions to promote affordability (Been
et al., 2019, 2025). Supply skeptics argue that new demand from other neighborhoods
and improved amenities offset any downward pressure on prices from additional sup-
ply. We find instead that a large share of the generous tax break granted to developers is
not offset by marginal cost increases or an increase in amenities and therefore is passed
on to consumers through lower housing prices. This result adds to recent evidence
showing that the negative effect of new supply on prices dominates the positive impacts
on prices of improved amenities and immigration from nearby areas (Li, 2022; Asquith
et al., 2023). Nevertheless, our finding that the spillover effect on switchers amounts
to 40% of the autarky effect indicates that demand re-sorting exerts a sizable offsetting
force on prices, helping to explain some of the political economy tensions surrounding
the housing affordability debate.

2Jardim et al. (2024) informally suggest these two assumptions in their discussion of minimum wage
effects under spatial spillovers.

3This approach has also been applied beyond spatial contexts. For example, Rotemberg (2019) studies
spillovers of firm subsidies in India and Bachmann et al. (2023) analyze demand spillovers in the 2015
Volkswagen emissions scandal. Additionally, Fan and Yang (2025) decompose market equilibrium effects
as differences of counterfactual scenarios.

4Munro et al. (2025) use price elasticities to recover consistent estimates of the direct effect of the policy
as well as spillover effects in an experimental setting with agents facing a unique price in self-contained
markets.
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2 Difference-in-Differences in Equilibrium

2.1 SUTVA and Difference-in-Differences

The stable unit treatment value assumption (SUTVA) requires that the outcome of each
unit does not depend on the treatment status of other units (Imbens & Rubin, 2015).
This assumption allows one to write the potential outcome of every unit as effectively
depending only on its assigned treatment status. In a canonical DiD framework with
two periods (t ∈ {pre, post}) and discrete treatment (D ∈ {0, 1}), there are two types of
units j. Namely, one that never receives treatment, and one that receives treatment only
in the post-period. In this framework, the first type of units has a potential outcome
Yj,t(0) and the second type has Yj,t(1). The causal estimand of interest is the average
treatment effect on the treated (ATT) in the second period (Roth et al., 2023):

ATT = β = E[Yj,post(1)− Yj,post(0)|Dj = 1] (1)

The challenge to compute the object of interest β is that Yj,post(0) is not observed when
Dj = 1. Under the assumptions of parallel trends and no anticipation, the DiD esti-
mator surmounts this challenge by building a counterfactual for the never observed
E[Yj,post(0)|Dj = 1]. This counterfactual is obtained by adding the average change in
the outcomes of the untreated units between both periods to the baseline average for
treated units:

β̂DiD = (Ȳt=post,D=1 − Ȳt=pre,D=1)− (Ȳt=post,D=0 − Ȳt=pre,D=0) (2)

where Ȳt,d is the sample mean in period t. When SUTVA is violated, for example, due
to the re-sorting of agents between treatment and control, the DiD estimator fails to
estimate the ATT. We discuss this case in the following subsection.

2.2 SUTVA Violations in a City-Wide Market Equilibrium

SUTVA violations can arise for several reasons, including network effects or market
equilibria (Manski, 1993). We apply our discussion of DiD to SUTVA violations caused
by demand-side re-sorting of agents in response to the introduction of a supply-side
subsidy in a city’s housing market. Without loss of generality and under homogeneous
effects, we assume that there are only two neighborhoods and a generic area outside the
city. One neighborhood A, with housing price pAt , receives the subsidy, and the other
neighborhood B, with housing price pBt , does not. With housing prices as the outcome
variable, Equation 2 can be written as:

β̂DiD = (pApost − pApre)− (pBpost − pBpre) (3)
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Analogously to the analysis of Allen and Arkolakis (2023) on the spatial equilibrium
across cities, the within-city equilibria can be expressed with simple supply and demand
equations. The demand side in our context consists of households choosing whether to
buy a housing unit in one of the two neighborhoods or outside the city. There are two
main determinants of that discrete choice: housing prices and amenities. These are
denoted by the vectors pt and at, respectively. The demand function for housing in
each neighborhood j is Dj(pt, at).

The supply side is characterized by property owners who choose whether to sell
their housing unit (new construction or existing unit) located in neighborhoods A or
B. Higher prices induce a higher supply of housing units available for sale. This rela-
tionship is represented by an upward-sloping supply function, Sj(qjt ), with qjt denoting
the quantity offered in neighborhood j at time t. We assume that both households and
property owners make static decisions in each period.

We first examine the DiD estimator in the case of no re-sorting between neighbor-
hoods A and B. We then examine the more general case with re-sorting. After present-
ing these two cases, we introduce a generalized decomposition for two neighborhoods,
which we then extend to many neighborhoods.5

Figure 1: DiD with No Re-Sorting between Neighborhoods A and B

Quantity

Price

Quantity

Price

Figure 1 presents the autarky situation in which consumers do not relocate between
A and B, but may relocate between each neighborhood and the outside option. Imple-
menting a supply-side subsidy in A would first result in an outward shift of the supply
in this neighborhood.6 Due to lower prices, more households choose to live in A instead
of outside the city, which explains the observed movement along the demand curve in
A. Neither demand nor supply in neighborhood B are affected, and thus prices there do
not change.7 The estimated DiD in this scenario equals the difference in prices between
periods 2 and 1 in the neighborhood A:

5Throughout the section, we focus on demand-side re-sorting of households, and thus abstract away
from supply-side re-sorting. Supply-side re-sorting in response to a demand-side place-based policy
could be analogously accommodated in the framework. As discussed in Section 3, we evaluate that
supply-side re-sorting is not relevant in our empirical setting due to the existence of a very large number
of small developers.

6Note that the policy affects the supply of all units—existing and new construction—because the fu-
ture supply of new subsidized units depresses the prices of existing non-subsidized units. At any price,
the supply would be larger once the subsidy is implemented.

7We abstract away from other changes happening over time. Note that this is analogous to assuming
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β̂AUT
DiD = (pA2 − pA1 )− (pB2 − pB1 ) = pA2 − pA1

In this situation of autarky, the DiD estimator correctly captures the effect of the sub-
sidy on the targeted areas. Next, we show that this is not the case when agents re-sort
between the two neighborhoods, as this violates SUTVA.

Figure 2: DiD with Re-Sorting between Neighborhoods A and B

Quantity

Price

Quantity

Price

Figure 2 highlights a situation in which consumers may relocate between the two
neighborhoods. When the supply side subsidy is introduced in neighborhood A, hous-
ing prices drop from pA1 to pA2 . As in Allen and Arkolakis (2023), there is a new “round”
of effects which we index as taking place at t = 3. Now, the demand curve rotates coun-
terclockwise in neighborhood A, and shifts to the lower left in neighborhood B.8 Both
movements are due to re-sorting. Re-sorting increases prices in A from pA2 to pA3 while
reduces those in B from pB1 = pB2 to pB3 . Estimating the effect of the policy with DiD now
yields the following:

β̂DiD = (pA3 − pA1 )− (pB3 − pB1 )

= (pA3 − pA2 + pA2 − pA1 )− (pB3 − pB2 + pB2 − pB1 )

= (pA2 − pA1 ) + (pA3 − pA2 )− (pB3 − pB2 )

With demand re-sorting between the two neighborhoods, the estimated DiD contains
not only the autarky effect from before but also the price increase in A due to higher
demand, as well as the price decrease in B due to the lower demand.9 As indicated in
Equation 4, we refer to the additional effect in A as “spillover-on-switchers”, and to the
effect in B as “contamination”. While in our context both effects attenuate the autarky

“parallel trends” as in Roth et al. (2023). Those other changes may include improvements in amenities
correlated with the policy, which we discuss in detail in Subsection 7.3.

8The new demand curve in A passes through the original (q1A, p
1
A) pair, reflecting that the amount of

housing demanded would be the same at the original price, but yields higher demanded quantities for
prices below p1A, capturing the re-sorting of agents away from B and into A in reaction to those lower
prices.

9Using the “exposure mapping” notation from Aronow and Samii (2017), it is also possible to write
these three terms as potential outcomes along the lines of proposition 2.1 in Butts (2023a).
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effect of the policy, the former is part of the legitimate effect of the policy on the targeted
neighborhood and the latter “contaminates” the DiD estimate.

β̂DiD = (pA2 − pA1 )︸ ︷︷ ︸
Autarky

+ (pA3 − pA2 )︸ ︷︷ ︸
Spillover-on-Switchers︸ ︷︷ ︸

Treatment Effect on Subsidized Area

− (pB3 − pB2 )︸ ︷︷ ︸
Contamination

(4)

In this market equilibrium setting, the DiD estimate thus no longer recovers the ATT
of the policy, which is given by the sum of the first two terms of Equation 4. As noted
by Sobel (2006), differences in means under SUTVA violations recover the relative effect
between treated and control units. This relative effect, given by the sum of the three ef-
fects (i.e. β̂DiD), could be of interest in some contexts. For example, when the researcher
is interested in the effect of a policy on the outcome of one region relative to others, such
as the distributional effects of trade shocks (Dix-Carneiro and Kovak, 2017). But even
in these cases, there is great value in recovering the effects on different areas separately.
On one hand, the ATT allows policymakers to understand the total effect of the policy
on the targeted area. On the other hand, the contamination effect can be of interest by
itself, as it shows an effect of the policy on non-targeted areas.

In Figure 2, the relative effect of the policy is zero because the price reduction is the
same in both regions. More generally, in markets with the same fundamentals before the
policy, the relative effect of the subsidy will always be zero. This is because equilibrium
arbitrage would equalize prices after the policy, even when the policy is implemented
only in one area. However, as in our example, the policy can reduce prices in both areas
compared to the situation before the policy. So the DiD estimate would state that the
policy had no (relative) effect when it reduced prices in both areas.

Finally, our market equilibrium framework implies that the issue of contamination in
Equation 4 arises in a broader set of contexts than the one we study. First, it is not only
specific to DiD methods. Contamination originates from the utilization of the control
area equilibrium prices that already incorporate the effect of the policy (pB3 ). There-
fore, other estimation approaches, such as regression discontinuity or propensity score
matching, that also use pB3 as a control, would produce estimates that suffer from con-
tamination. Second, Equation 4 determines the sign of the bias by showing that con-
tamination is subtracted from the ATT. In our context, the policy changes outcomes in
treatment and control areas in the same direction (i.e., both ATT and contamination are
negative), so contamination biases the estimate towards zero. In other very relevant
contexts, such as studies of the impact of place-based policies on employment or firm
creation within a city (Mayer et al., 2017), contamination may produce upward-biased
estimates (i.e., ATT is positive and contamination negative).
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2.3 DiD Decomposition with Supply and Demand Elasticities

In this subsection, we derive an approximation formula for the DiD estimator that helps
to understand the determinants of the relative sizes of both the spillover-on-switchers
and contamination effects. The relative size of contamination in that formula defines
the relative size of the asymptotic bias of the DiD estimate.

We linearize the supply and demand model from above to express Equation 4 in terms
of supply and demand elasticities. We start with two neighborhoods and one outside
option, and then generalize to multiple subsidized neighborhoods.10

The case of one subsidized neighborhood. Define the inverse housing supply function
as P j

S(q
j), and the diversion ratio DRA,B as the ratio between the change in demand for

B and the change in the demand for A when the price of A changes.11 As we show in
Appendix B, the DiD estimator is approximately equal to:

β̂DiD ≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky in A

×

[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Spillover-on-Switchers Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Contamination Scaling

]
(5)

Equation 5 highlights that the DiD estimate in a situation with re-sorting between
subsidized and unsubsidized neighborhoods is a scaled version of the policy’s effect in
autarky. Intuitively, the scaling factors depend on the responsiveness of demand and
supply in the two neighborhoods, increasing with the demand’s sensitivity to prices
and the supply-side responsiveness of prices to quantities.

The second term inside the square brackets in Equation 5 is the scaling factor due to
the spillover-on-switchers. It captures the effect of households relocating to this area as
a result of the subsidy. The last term inside the main bracket deserves special attention
as it is the one causing the DiD estimator to be biased and unable to recover the true
effect of the policy on the subsidized areas. This term increases linearly with respect
to each of its three components: the partial of the demand in the subsidized neighbor-
hood with respect to its own price, the partial of the inverse supply in the unsubsidized
neighborhood with respect to its own quantity, and the diversion ratio between the two
neighborhoods. Intuitively, the bias of the DiD estimator is higher when subsidized and
unsubsidized neighborhoods are close substitutes and the supply curve in unsubsidized
neighborhoods is more inelastic.

The case of multiple subsidized neighborhoods. The general formula still computes
the DiD term between A and B but allows for re-sorting into A and B from all other
neighborhoods.12 In this general case, the DiD estimator can be approximately com-

10Figure A.1 in Appendix A presents a graphical representation of situations with a single versus mul-
tiple subsidized neighborhoods.

11The analytical definition of that diversion ratio thus is DRA,B = ∂DB/∂pA

∂DA/∂pA .
12Note that the case with one subsidized area and multiple unsubsidized areas is reflected in Equa-

tion 5. The right panel of Figure A.1 in Appendix A presents a graphical representation of the situation
with multiple subsidized areas.
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puted with the following formula derived in Appendix B:

β̂DiD ≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky in A

×

[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Direct Spillover-on-Switchers Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Direct Contamination Scaling

]

+
∑
k∈K

(pk2 − pk1)︸ ︷︷ ︸
Autarky in k

×

[
∂Dk

∂pk
× ∂PA

S

∂qA
×DRk,A︸ ︷︷ ︸

Indirect Spillover-on-Switchers Scaling

− ∂Dk

∂pk
× ∂PB

S

∂qB
×DRk,B︸ ︷︷ ︸

Indirect Contamination Scaling

] (6)

with K denoting the set of all subsidized neighborhoods excluding A.
Equation 6 has similar terms to before but also some differences. The first line is the

same as in Equation 5. The second line includes two terms that capture the effects of
the subsidy in all the other subsidized areas different from A. First, there is the indirect
re-sorting spillover on switchers, i.e., households relocating away from neighborhood A

into other subsidized neighborhoods. Since prices in other areas decrease, this indirect
re-sorting moderates the price increase in A generated by the direct re-sorting spillover
on switchers. Second, there is the indirect contamination effect. This captures the effect
of the introduction of the subsidy in areas other than A on the price in neighborhood
B. Therefore, the full contamination effect now is unequivocally larger than before.
Overall, in the most typical case of more than one neighborhood being subsidized, the
DiD estimator is even less accurate, suffering to a larger extent from the contamination
effect.

2.4 Guidelines for Empirical Work

In this subsection, we discuss the main guidelines provided by the formulas above to
researchers studying contexts with SUTVA violations due to re-sorting. First, Equations
4 to 6 show that the contamination effect biases the DiD estimate and provides the direc-
tion of the bias. Researchers can thus use the formula to know if contamination drives
the estimate towards zero, as in our case, or may be a source of upward bias when the
policy moves outcomes in opposite directions in treatment versus control areas.

Second, our formulas highlight the determinants of the bias. Knowing these deter-
minants can help the applied researcher choose better control areas in contexts of re-
sorting. The fact that contamination increases with the inverse housing supply elastic-
ity of the unsubsidized area deserves special attention given the available evidence on
neighborhood-level housing supplies being rather inelastic (Baum-Snow & Han, 2023).
The literature already provides rich proxies of the relevant elasticities. On the supply
side, Baum-Snow and Han (2023) show that housing supply is more elastic in places
with more undeveloped land, flatter, and less regulated. On the demand side, re-
searchers should look for control areas that consumers see as poor substitutes for the
targeted areas. Data on relocation flows can help.
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Third, in contexts with only one subsidized and one unsubsidized area (captured by
Equation 5), the elasticities of supply and demand constitute sufficient statistics for the
relative size of each effect (Saez, 2001; Chetty, 2009). That is, before doing the study,
if the researcher has supply and demand elasticities from the literature, she would be
able to compute the relative size of the effects. Additionally, after doing the study, the
formula in Equation 5 allows to combine DiD estimates with supply and demand elas-
ticities to calculate all three terms in Equation 4. For small changes around equilibrium,
it is possible to recover the ATT without estimating a structural model.13

Fourth, Equation 6 shows that with more than one subsidized area, the ATT can-
not be computed anymore knowing only the supply and demand elasticities. To com-
pute the three effects, the researcher would need to know the effect of the policy in au-
tarky in all the subsidized neighborhoods. In some contexts, including ours, researchers
can have only one subsidized and one unsubsidized area following an aggregation ap-
proach.

Finally, the formulas help to review the assumptions that allowed the previous litera-
ture to identify the effect of place-based policies in contexts of re-sorting. One strand of
literature assumes that there is a sufficiently faraway area unaffected by the policy, and
thus can be used as a “contamination-free control”. Kline and Moretti (2014), Clarke
(2017), Mayer and Trevien (2017), and Butts (2022) are prominent examples implement-
ing this ring or donut approach. Equation 5 shows that this approach requires that
the diversion ratio between the area of interest (A) and the control area (B) is zero
(DRA,B = 0).14 One important limitation of the ring approach is that when policies
are “large” all areas could be affected. The formula shows that one can use demand
estimates to directly test for the hypothesis of the existence of an unaffected area.

A second strand of the literature can be seen as assuming that there is a large enough
number of areas such that each area is too small to affect the rest through re-sorting.
Examples of this strategy are Busso et al. (2013) and Chen et al. (2022). The formula
in Equation 5 shows that this is equivalent to assuming that ∂DA

∂pA
= 0, implying that in

these contexts the DiD estimate captures only the autarky effect.

3 Institutional Context and Data

3.1 Institutional Context

The policy we analyze is a typical tax break for residential investment in lagging urban
areas, similar to the Opportunity Zones (OZ) program in the US. In contrast to the OZ
tax breaks, which might be directed to commercial or residential development, the one

13Munro et al. (2025) highlight how in certain settings, such as online marketplaces, researchers can
estimate the necessary elasticities with small random price perturbations.

14Note that in principle we only need ∂DB/∂pA = 0. However, we express this assumption in terms of
the diversion ratio because it expresses the substitution in percentage terms and is typically used in the
demand estimation literature (e.g. Conlon and Mortimer, 2021).
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we analyze is only directed at residential development. We refer to the policy by its
familiar Spanish acronym, “LVIS” (Ley de Vivienda de Interés Social). Although the name
of the policy refers to the promotion of social housing, LVIS units did not have to be
occupied by low-income households and could be freely sold at market prices during
the period we analyze.

Tax breaks in LVIS are quite large. González-Pampillón (2022) estimates that the total
tax benefits equal 20% of the cost of the projects. The main tax break is the complete
exemption from the 22% value-added tax on inputs. LVIS projects are also fully exempt
from the country’s corporate tax of 25%, and units devoted to the rental market are
partially exempt from income and wealth taxes.

The law that created LVIS was approved by the Uruguayan parliament in August
2011. Its implementation details, including the designation of the subsidized zones,
were only defined in October of that year. Therefore, we take October 2011 as the start-
ing date of the policy. The policy was substantially modified in June 2014, adding price
ceilings and other restrictions that made the program less attractive to investors. Be-
cause these modifications substantially changed the potential impact of the policy on
housing prices, our analysis ends in May 2014.

We study the impact of LVIS tax breaks in the department of Montevideo, which
holds the homonymous 1.3 million capital city of Uruguay and concentrated 70% of
LVIS projects during our period (Berrutti, 2017). LVIS in Montevideo subsidized resi-
dential development in low- and middle-income neighborhoods. The left panel of Fig-
ure 3 presents a map of subsidized and unsubsidized areas in the urban territory of
the Montevideo department. The area without subsidies is located along the southeast
coast of the city, by the Rio de la Plata river, and concentrates most of the middle- and
high-income neighborhoods. The subsidized area covers almost three-quarters of urban
Montevideo, including the central and older areas of the city as well as working-class
neighborhoods.

The borders of the policy were defined jointly by the Ministry of Housing, the Min-
istry of Economics and Finance, and the local government of Montevideo with the ex-
plicit intention of excluding high-income neighborhoods from the subsidies (González-
Pampillón, 2022; Borraz et al., 2024). About half of the border coincides with one of the
main avenues of the city, which has been historically the most important spatial division
between low- and high-income neighborhoods in Montevideo. The other half follows
minor streets within homogeneous neighborhoods. In the paper, we exploit this con-
trast between low and high heterogeneity across different parts of the border to obtain
DiD estimates corresponding to more or less intense re-sorting.

The generosity of the tax breaks implied that the policy had a huge impact on the
location of residential investment in Montevideo. Berrutti (2017) shows that the share of
the subsidized area in terms of square meters of construction permits went from around
20% before the policy to more than 60% in its first three years. Another measure of the
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huge quantitative relevance of the policy is provided by González-Pampillón (2022),
who estimates that the total amount of investment that benefited from the tax break
during the first five years of the policy amounted to 1.5% of the country’s GDP.

The mechanics of the law required developers to apply for tax benefits and obtain
project approval prior to starting construction. Due to this process, combined with the
usual construction timelines, the first LVIS projects were only completed in 2013, and
initial LVIS property sales occurred in 2014, with the majority of sales taking place in
subsequent years (González-Pampillón, 2022). Consequently, almost no LVIS projects
and very few LVIS sales were finalized during our period of analysis. This timing im-
plies that we capture the capitalization of anticipated lower construction costs into cur-
rent housing prices, rather than the direct effects from completed subsidized units or
associated amenities. Since a significant number of LVIS projects were approved and
under construction—and these figures were publicly available—, during our period of
study it was widely known that housing supply in targeted neighborhoods would ex-
pand substantially. Importantly, many LVIS properties were sold “en pozo” (pre-sale),
meaning that transactions began before units were finished. This suggests that, in addi-
tion to the expectations channel, the policy may have had a more immediate impact on
the market through actual pre-sale activity.

The existence of public data on developers’ applications to obtain the LVIS tax break
allows us to characterize the new housing supply generated by the policy as being pro-
vided by highly atomistic producers. Of the 1,073 projects presented until October 2022,
the average firm had 0.1% of the projects and 0.1% of the housing units. The maximum
share attained by any single firm was 1.9% and 2.0% of the number of projects and
housing units, respectively. This scenario of atomistic suppliers motivates the perfectly
competitive assumption for the supply side in our model and reinforces our hypothesis
of a negative effect of the policy on the housing prices of subsidized areas.

3.2 Data

We use five sources of data. The first and most important is the universe of housing
transactions from the National Registry Office in Uruguay for the period 2010-2014.
These data include the exact price and day for each housing sale as well as a measure
of the area transacted. Uruguay is a high-income country according to the World Bank
classification and has the lowest levels of informality in the region. This database of reg-
istered housing transactions is thus representative of the highly formal housing market
of Montevideo.

The transaction data includes a unique property number, allowing us to match each
sale with its corresponding entry in the National Cadaster of Uruguay registry, our sec-
ond data source. This matching gives us the exact location of the parcel where the
property is located and a set of housing characteristics, including the property area. We
use this area from the cadaster when the area in the sales data is missing. The cadaster
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data do not exist for the years we analyze, and thus we use the earliest dataset avail-
able, which corresponds to 2016. We remove the top and bottom percentiles of the area
and price distribution of the transaction dataset to avoid our estimates being affected
by extreme values.

Table 1 presents descriptive statistics on the transaction data, separately for the sub-
sidized and unsubsidized sections of the city, and distinguishing before and after the
introduction of the policy. Consistent with the policy subsidizing lagging areas, prices
are lower in the subsidized areas. Housing prices grow over time in all areas due to a
context of strong economic growth in Uruguay during this period.

Table 1: Housing Prices and Area by Subsidy Status in the Pre and Post Periods

Pre Post

Subsidized Unsubsidized Subsidized Unsubsidized

Number of Transactions 10, 035 6, 793 13, 112 8, 861

Mean Square Meter Price (USD/m2) 701 1, 446 955 1, 894
(505) (675) (680) (874)

Mean Transaction Size (m2) 125 96 123 91
(136) (105) (134) (99)

Source: Authors’ calculations using housing transaction data from the National Registry Office in Uruguay.
Notes: Standard deviations are provided in parentheses. Calculations in the “Pre” supra column correspond to the

period between January 2010, when our data start, until September 2011, the month before the policy’s starting date.
Calculations in the “Post” supra column correspond to the period beginning in October 2011 and ending in May 2014.
The “subsidized” and “unsubsidized” columns indicate the area in which the transaction occurred. Figure 3 presents a
map of those two areas.

Throughout the paper, we use a set of housing characteristics as controls in various
regression exercises that have the price of housing as the dependent variable. These
control variables are obtained from the cadaster data except for the distance to the coast,
which we compute using the exact location of the transaction. The set of housing charac-
teristics from the cadaster includes the age of the property as well as a set of categorical
variables indicating construction category, construction condition, type of ceiling, and
if there is ongoing construction work on the property.

The third data source is a geo-coded map of the areas subsidized by LVIS, similar to
Figure 3. This map allows us to assign a subsidized or non-subsidized status to each
housing transaction in the city, and to calculate the exact distance of those transactions
to the borders of the policy.

Our fourth and fifth data sources are Uruguay’s population census and the main
household survey, the Encuesta Continua de Hogares. We use these to construct and
validate the neighborhood and nest structure employed in the discrete-choice demand
estimation. Since Montevideo lacks administrative units that reflect meaningful varia-
tion in taxation or public service provision, we partition the city into contiguous, ho-
mogeneous units by grouping similar census tracts. We apply the SKATER spatial clus-
tering algorithm developed by Assunção et al. (2006), evaluating tract similarity with
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the average years of education of their adult population in the 2010 census. We first
cluster contiguous tracts into neighborhoods and then group similar but not necessar-
ily contiguous neighborhoods into nests. Panel (a) of Figure 3 displays the resulting 30
subsidized and 19 unsubsidized neighborhoods and panel (b) their grouping into nests.
We provide further detail on this two-stage clustering process in Appendix C.

We employ household survey data on relocation patterns within Montevideo during
the three years preceding the policy to validate the nest structure. Table C.1 (Appendix
C) shows that migration flows between adjacent neighborhoods are 23% higher when
both belong to the same nest. This difference remains statistically and roughly constant
controlling for origin and destination neighborhood fixed effects.

Figure 3: Neighborhood Classification by Subsidy Status and Nest
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(a) Neighborhoods by Subsidy Status
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(b) Neighborhoods by Nest

Source: Authors’ illustrations using official shapefiles from the Geomatic Service of Uruguay.
Notes: In panels a) and b), the thicker line shows the border of the policy and the thinner lines show the
neighborhood limits. In panel b), the colors represent our grouping of neighborhoods into nests, which
we use in the nested logit demand model. We defined neighborhoods and nests using a spatial clustering
algorithm, as explained in Appendix C.

4 Difference-in-Differences Results

4.1 Benchmark Difference-in-Differences

We start by estimating the canonical DiD specification:

pijt = γj + αt + βSubsidyj × Postt + f(Xijt) + ϵijt (7)

with pijt denoting the price per square meter of transaction i in neighborhood j at
month t. Because each neighborhood is completely subsidized or unsubsidized, the
neighborhood fixed-effect γj subsumes the Subsidyj term. f(Xijt) is a third-order poly-
nomial on the set of housing characteristics mentioned in the previous section.

Columns 1 to 3 of Table 2 present our first set of DiD estimates. The defining feature
of this first set is that it implements the canonical DiD specification using all transac-
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Table 2: Difference-in-Differences Regressions

Dependent Variable:

USD per Square Meter

(1) (2) (3) (4) (5) (6)

Subsidized × Post-Policy −194∗∗∗ −178∗∗∗ −181∗∗∗ −1 −58∗ −61
(31) (26) (27) (52) (32) (38)

Housing Characteristics - ✓ ✓ - ✓ ✓
Fixed Effect - Geography Subsidized Subsidized Neighborhood Subsidized Subsidized Neighborhood
Fixed Effect - Time Post-Policy Post-Policy Year × Month Post-Policy Post-Policy Year × Month
No. Obs 38,801 38,801 38,801 7,579 7,579 7,579
Data City-Wide City-Wide City-Wide 500m Buffer 500m Buffer 500m Buffer
Pre-Policy Price per Square Meter 1,002 1,002 1,002 1,112 1,112 1,112

Source: Authors’ calculations using housing transaction data from the National Registry Office in Uruguay and matched data on property characteristics
from the country’s national cadaster.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the neighborhood level and provided in parentheses. The “Housing Character-

istics” controls consist of a polynomial of degree three on transaction area in square meters, building age in years, distance to the coast in meters, and
indices of construction category, construction condition, type of ceiling, and if there is ongoing construction work on the property. The areas behind the
“Subsidized” and “Neighborhood” fixed effects are shown in Figure 3. The 500-meter buffer restriction requires that the transaction is located less than
500 meters away from the border of the policy. This 500-meter buffer is shown in Figure A.2 in Appendix A.

tions in the city. Column 1 only has the three traditional DiD terms, the second column
adds the controls, and the third adds month-year and neighborhood fixed effects. All
three columns show negative estimates of very similar magnitude. This result is further
confirmed graphically in Figure A.4 and Figure A.6 in Appendix A, which also show
parallel pretrends between subsidized and unsubsidized areas. Our preferred estimate
of -181 USD per square meter, in Column 3, is quite large, representing 18% of the aver-
age price per square meter before the policy.

4.2 Additional Estimates

A second set of estimates features commonly used techniques aimed at increasing the
comparability between subsidized and unsubsidized areas to mitigate concerns regard-
ing unobserved confounders (Baum-Snow & Ferreira, 2015; Chen et al., 2022). Consis-
tent with our framework, all the estimates in this subsection are significantly smaller in
absolute value than those in the previous one.

The first and most common technique to maximize comparability between treatment
and control areas is to restrict the estimating sample to units located right along the
border of the policy (Neumark & Kolko, 2010; Chen et al., 2022). In their evaluation of
the employment impacts of Enterprise Zones in the US, Neumark and Kolko (2010) state
that “the ideal control group consists of areas economically similar to enterprise zones
but lacking enterprise zone designation”. The estimates in Columns 4 to 6 of Table 2
follow this approach by restricting the sample to a 500-meter buffer around the border.
Figure A.2 in Appendix A provides a map of this buffer, and Figure A.5 and Figure A.7
present the usual DiD graphs. The pre-policy price levels on both sides of the border in
Figure A.5 indicate that both areas are indeed very similar. Our preferred point estimate,
in Column 6, is -61 USD per square meter with a standard error of 38. Thus, a researcher
employing a border DiD design in this context would not be able to reject the hypothesis
that the tax break had a null effect on the prices faced by consumers.
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Table 3: Difference-in-Differences Regressions - Extensions

Dependent Variable:

USD per Square Meter

(1) (2) (3) (4) (5) (6)

Subsidized × Post-Policy −90∗∗∗ −112 −79∗ −84∗ −113∗ −121∗∗∗

(32) (75) (45) (45) (57) (36)

Housing Characteristics ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effect - Geography Neighborhood Neighborhood Neighborhood Neighborhood Neighborhood Neighborhood
Fixed Effect - Time Year × Month Year × Month Year × Month Year × Month Year × Month Year × Month
No. Obs 38,801 4,384 7,579 6,982 6,619 7,442
Data:

Subsidized Area All 0-500m 0-500m 0-500m 0-500m 0-500m
Unsubsidized Area All 0-500m 0-500m 500-1000m 1000-1500m 1500-2000m

Estimation Method DiD with PScore RD RD-DiD Ring-DiD Ring-DiD Ring-DiD

Source: Authors’ calculations using housing transaction data from the National Registry Office in Uruguay and matched data on property characteristics from
the country’s national cadaster.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the neighborhood level and provided in parentheses. The “Housing Characteristics”

controls consist of a polynomial of degree three on transaction area in square meters, building age in years, distance to the coast in meters, and indexes of
construction category, construction condition, type of ceiling, and if there is ongoing construction work on the property. The “DiD with PScore” is implemented
by re-weighting observations in the unsubsidized areas with weights obtained from a probit model of receiving the subsidy. The characteristics used in that
model coincide with the ones used as controls in all regressions. The RD and the RD-DiD are estimated with a second-degree polynomial on the distance to
the border. The RD uses only data for the period after the subsidy was introduced. The “Subsidized” and “Unsubsidized Area” rows indicate the distance to
the border of the policy required for each transaction to be considered in the regression. For instance, Columns (2) and (3) consider transactions located in the
500-meter buffer around the border, which is shown in Figure A.2 in Appendix A. Columns (4) to (6) consider the same 500-meter buffer for transactions in
subsidized areas but different buffers for those in unsubsidized areas. These alternative buffers are drawn in Figure A.8 in the Appendix A.

The first three columns of Table 3 introduce three additional common techniques that
enhance the comparability between subsidized and unsubsidized areas. The first col-
umn features DiD with propensity-score reweighting (A. Smith & E. Todd, 2005; Aker,
2010; Wang, 2013; Chen et al., 2022), the second implements a border regression discon-
tinuity instead of DiD (Holmes, 1998; Black, 1999; Bayer et al., 2007; Turner et al., 2014),
and the third one estimates a difference-in-discontinuities design (Grembi et al., 2016;
Butts, 2023b). All of these estimates are much smaller in absolute value than the ones
obtained for the whole city.

Finally, we follow the popular ring approach (Di Tella & Schargrodsky, 2004; Kline
& Moretti, 2014; Butts, 2022; Myers & Lanahan, 2022). If the heterogeneity between
subsidized and unsubsidized areas grows with distance from the border, re-sorting and
thus contamination should decrease, and according to our formula the DiD estimate
should increase in absolute value. This is indeed the observed pattern in Columns 4, 5,
and 6 in Table 3, which present DiD estimates for 500-1000, 1000-1500, and 1500-2000
meter rings, respectively.

This ring approach can identify the true effect of the policy on subsidized areas as long
as the spillovers are zero after a certain distance from the border (Clarke, 2017; Butts,
2022; Myers & Lanahan, 2022). This requirement may not hold in many contexts because
of two difficulties, which are present in our study. First, natural (sea, mountains) or
human-made (park, highway) constraints may limit how far from the border one can
go.15 This is often the case in coastal cities, such as ours. Only 10% of our unsubsidized
transactions are beyond 2,100 meters from the border (See Figure A.8 in Appendix A).
Second, as noted by Butts (2022), when policies are large enough to induce the re-sorting

15The spillover-free area can be quite far in some cases. For instance, Clarke (2017) finds that the
spillovers of text messaging bans extend for at least 30km.
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of agents throughout the entire city, spillover-free areas may well not exist.

4.3 Difference-in-Differences with Heterogeneous Effects

Finally, we explicitly introduce heterogeneity in our DiD estimator by interacting the
DiD term in the border specification with an index of price differences across the bor-
der. Figure A.9 in Appendix A illustrates how we compute that index. We draw a
large number of 500-meter circles centered along the border and compute the median
price per square meter for each side of the border within each circle. We then assign
each transaction the weighted average of the difference between the two medians for
all circles that contain the transaction, with weights given by the inverse distance to the
center of the circle. We standardize the index by subtracting its mean and dividing by
its standard deviation.

The second column of Table A.1 in Appendix A presents the estimate of the interac-
tion between the DiD term and the heterogeneity index. A standard deviation increase
in the heterogeneity of the border increases the absolute value of the DiD estimate by
55 USD per square meter. This is a large magnitude given our estimate of 181 USD for
the whole city. Figure A.10 in Appendix A plots the implied relationship between the
DiD estimate and the border heterogeneity index and shows how the 95% confidence
interval includes zero for the whole bottom half of the index distribution.

In Section 7.2 we further discuss these findings by computing—for our estimated
model—separately the contamination effect and the heterogeneous treatment effects.
Using our model, we show that contamination does indeed correlate positively with
both the degree of homogeneity across the border and with diversion ratios. Recovering
contamination for the whole city further allows us to quantify the level of bias of the
alternative DiD estimates presented in this section.

5 A Model for Quantifying Contamination

5.1 Demand

In our model, households make a discrete and exclusive choice regarding the neigh-
borhood in which they are buying a generic housing unit (GHU) in Montevideo. This
discrete set of geographical areas is complemented by an outside option consisting of
buying a GHU in the localities belonging to the broader metropolitan area of Montev-
ideo. Households choose the option that yields the highest indirect utility using Equa-
tion 8.

Vijt = V (AMjt, Pjt, ϵ̃ijt) (8)

The first argument of the indirect utility function is the neighborhood amenity term
AMjt. Examples of such could be time-invariant, such as distance to the coast or major
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public infrastructure, or time-variant, such as restaurants, shops, or public transporta-
tion schedules. The second argument, Pjt, is the price per square meter of a GHU in
neighborhood j at time t. ϵ̃ijt denotes the unobserved preferences of consumer i at time
t for neighborhood j. We parameterize indirect utility with the following linear func-
tion:

V (AMjt, Pjt, ϵijt) = Aj +Bt − αPjt + ξjt + ϵ̃ijt = δjt + ϵ̃ijt (9)

The parametrization allows amenities to vary exogenously over time. Amenities
AMjt are the sum of a fixed component Aj , a city-wide time-varying component Bt,
and a term ξjt that varies over time at the neighborhood level and is unobservable
to the econometrician. We use a nested logit model that allows for controlling for
correlated unobserved heterogeneity across neighborhoods within nests. We define
ϵ̃ = ζint + (1− σ)× ϵijt, where σ with 0 < σ ≤ 1 is the nesting parameter. ζint is common
to all products in nest n. We assume ζint + (1− σ)× ϵijt follows a Type-1 Extreme Value
distribution. Note that the within-nest correlation goes to one as σ approaches one, and
that for σ = 0 the within-nest correlation goes to zero, and in this case we return to the
standard logit model.

The mean utility of the outside option is normalized to zero in every period (i.e. δ0t =
0 ∀ t). Following Berry (1994), this structure yields a linear equation where sjt is the
market share of area j in the whole market and s̄jnt is the market share of product j in
nest n.

ln(sjt)− ln(s0t) = δjt = Aj +Bt + ξjt − αPjt + σ ln(s̄jnt) (10)

Note that Equation 10 is derived from a model that accounts for relocation equilib-
rium effects and thus is not subject to the SUTVA violation problem of the reduced-form
DiD. As originally pointed out by Berry (1994) and highlighted by Allen and Arkolakis
(2023) for contexts with spatial spillovers, the consistent estimation of this equation re-
quires instrumenting for both the price and the nested-logit market share.

5.2 Supply

Perfectly competitive agents sell a total of Qjt GHUs in neighborhood j at time t.16

The perfect competition assumption implies that housing prices—net of taxes—equal
marginal costs:

Pjt = (1− τjt) ∗MC(Qjt). (11)

Marginal costs increase with the number of houses sold. This reflects that land is

16Perfect competition is the standard assumption in the literature modeling housing supply at the city
or neighborhood levels (Ahlfeldt et al., 2015; Baum-Snow & Han, 2023; Almagro & Domınguez-Iino,
2025). In Section 3 we provide evidence on the highly atomistic nature of developers in our context.
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fixed in each neighborhood and, as a result of this scarcity, it becomes more valuable
with consumers’ willingness to pay for living in the neighborhood. Marginal costs also
have a fixed component Ljt capturing neighborhood-specific aspects, such as the total
land available for housing construction, as well as city-level aspects, such as shocks to
construction costs.

Following previous literature, we parameterize the marginal cost function with the
following functional form (Saiz, 2010; Diamond, 2016; Baum-Snow & Han, 2023):

MC(Qjt) = Ljt ×Qη
jt (12)

Applying logarithms to both sides of Equation 12, and combining the resulting ex-
pression with Equation 11 yields the inverse housing supply curve:

lnPjt = lnLjt + ln(1− τjt) + η lnQjt (13)

5.3 Parallel Trends and Contamination in the Structural Model

Roth and Sant’Anna (2023) have shown that functional forms are one of the main chal-
lenges to parallel trends. Our structural model relies on a number of specific functional
forms, many of which are non-linear. Since we use this model to evaluate DiD estimates,
we need to verify that it can generate data where the parallel trends assumption is not
rejected at typical sample sizes. We evaluate this by simulating a series of equilibria of
the model with varying parameters.

We present the details of those simulations in Appendix D and summarize here the
two main conclusions we obtain. The first conclusion is that our model is able to gener-
ate data that satisfy the parallel trends assumption for certain regions of the parameter
space, even though it is highly non-linear in both its supply and demand sides. Figure
D.1 presents an example of parallel trends and the DiD estimator for a set of simula-
tions.17

The second conclusion is that increasing the idiosyncratic variation in neighborhood
amenities over time leads to more violations of parallel trends but reduces the degree
of contamination of the DiD estimate. Results for different relative values of the model
parameters are presented in Figure D.2 and D.3. Intuitively, when neighborhoods ex-
perience amenity shocks that are large relative to the size of the other shocks, this gen-
erates large changes in relative housing prices over time and leads to a rejection of the
parallel trend assumption. On the other hand,—as suggested by the decomposition for-
mula in Section 2 and the reduced-form results in Section 4—those amenity shocks make
neighborhoods more heterogeneous and consumers re-sort less in reaction to the sub-
sidy. This means less contamination and consequently a lower bias of the DiD estimate.
These simulation results thus suggest that, in contexts of re-sorting, there is a trade-off

17Equilibrium prices computed from our structural model at the estimated parameters also exhibit
parallel trends. Figures A.11 and A.12 in Appendix A present this evidence.
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between satisfying the parallel trend assumption and having no SUTVA violations for
certain regions of the parameter space.

6 Estimation

6.1 Demand

We estimate Equation 10 with a dataset that has a single quantity and price for each
combination of neighborhood and month-year. Those prices correspond to a homoge-
neous housing unit across neighborhoods, and we obtain them by estimating a regres-
sion that controls for a third-degree polynomial on the rich set of housing characteristics
introduced in Section 3. We explain this procedure in detail in Appendix E.

The Aj and Bt amenity terms in Equation 10 are captured by neighborhood and time
fixed effects, respectively, and the time-varying, neighborhood-specific amenities ξjt

constitute the error term. This term is correlated with the equilibrium prices and within-
nest shares, which makes OLS estimates of Equation 10 inconsistent. We address this
endogeneity by leveraging the introduction of the tax break as a supply shifter to build
a set of four instruments. The first one is identical to the DiD term and indicates if the
neighborhood has benefited from the subsidy at time t. The other three instruments
capture how the supply shifter differentially affects each nest. These are formed by
interacting the DiD term with the number of other neighborhoods in the same nest re-
ceiving the subsidy, their area in square meters, and the share of that area in the total
area of the nest.

The identification assumption behind our set of instruments is that the tax break
did not impact the time-varying amenities conditional on the set of fixed effects. This
assumption deserves special attention given the abundant evidence on the effects of
new housing supply on neighborhood amenities (Baum-Snow & Marion, 2009; Rossi-
Hansberg et al., 2010; Diamond & McQuade, 2018), including evidence for the program
we are studying (González-Pampillón, 2022; Borraz et al., 2024).

As we discuss in Section 3, almost no LVIS projects were completed during the period
we study. Because of this, we do not expect any direct impact of the subsidy on the at-
tractiveness of neighborhoods during our period. The policy could have still generated
changes in amenities after the period we study, impacting their present value and vio-
lating our exclusion restriction. González-Pampillón (2022) shows that new LVIS hous-
ing projects had a positive effect on housing prices after the period we study but that
these effects were highly localized. This implies that the area benefited by the projects’
spillovers constituted a very small share of the total subsidized area. That area was not
only small but also mostly still undetermined during the period we study, thus making
it very hard for agents to anticipate it.
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Table 4: Demand Estimation

Dependent Variable:

ln(sjt)− ln(s0t)

(1) (2) (3) (4)

Price per 100 Square Meters 0.02*** -0.00 -0.02*** -0.07***
(0.00) (0.00) (0.01) (0.01)

Within-Nest Log Market Share 0.66*** 1.00*** 0.72*** 0.69***
(0.01) (0.01) (0.27) (0.04)

Observations 2,646 2,646 2,646 2,646
Method OLS OLS IV Simulated IV
Fixed Effect - Geography - Neighborhood Neighborhood Neighborhood
Fixed Effect - Time - Year × Month Year × Month Year × Month
K-P 1st stage F 0.71 21.6

Source: Authors’ calculations using housing transaction data from the National Registry Office in Uruguay and
matched data on property characteristics from the country’s national cadaster.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are provided in parentheses. All four regressions estimate

Equation 10 at the neighborhood × month-year level. The first independent variable, price per 100 square me-
ters, is obtained as the neighborhood × month-year fixed effects in a regression of transactions prices per square
meter on those fixed effects plus a third-degree polynomial on housing age, area in square meters, distance to
the coast, and four variables from the cadaster describing construction quality. The IV regression in Column (3)
has four instruments. The first is identical to the DiD term and indicates if the neighborhood is being subsidized
at time t. The other three capture how the supply shifter differentially affects each nest. These are formed by
interacting the DiD term with: the number of other neighborhoods in the same nest receiving the subsidy, their
area in square meters, and the share of their area in the total area of the respective nest. The IV regression in
Column (4) uses the same instruments of Column (3) plus two additional ones. These are the equilibrium price
and within-nest log market share for each neighborhood × month-year combination in a simulated equilibrium
of the estimated model. See Subsection 6.1 for more details on that simulation.

To strengthen the first stage, we implement a three-step IV approach (Bayer et al.,
2007; Wong, 2013; Allen et al., 2020; Almagro et al., 2022). The first step consists of ob-
taining regular IV estimates using the four instruments described above. In the second
step, we use these estimates to solve for the model’s equilibrium when all time-varying
parameters, including amenities, are set to zero. Finally, in the third step, we re-estimate
demand, adding the equilibrium prices and nest shares obtained in the second step to
the set of instruments. Note that the additional two instruments are obtained in an equi-
librium in which, by construction, time-varying amenities are set to zero and thus are
not affected by changes in neighborhoods’ attractiveness.

The first OLS estimate of the price coefficient in Column 1 of Table 4 is positive, which
is consistent with prices being positively correlated with neighborhood amenities. The
neighborhood and month-year fixed effects seem to remove part of the endogeneity, be-
cause the estimate of the price coefficient in Column 2 is still negative but much smaller,
making it statistically indistinguishable from zero. Columns 3 and 4 present the regular
and three-step IV estimates, respectively. Column 4 shows a negative and significant
coefficient for the price, and a nested logit term coefficient satisfying the restriction of
being between 0 and 1.
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6.2 Supply

Our inverse housing supply in Equation 13 has two parameters: the subsidy τjt and
the inverse supply elasticity η. For the first parameter, we externally calibrate it using
González-Pampillón (2022)’s estimate of the LVIS subsidy representing 20% of the final
housing price. For the second parameter, in our main approach we use the DiD estimate
as an additional moment to estimate the full supply and demand model. Specifically,
we calibrate η such that there is an exact match between our benchmark reduced-form
DiD estimate of -181 USD per square meter and its structural counterpart.18

The structural counterpart of the reduced-form DiD is the double difference in equi-
librium prices between subsidized and unsubsidized neighborhoods and between the
model with and without the subsidy. We solve for the model’s equilibrium at the
monthly level, thus mirroring the structure of our data, and taking the IV-estimated
demand parameters and the calibrated supply parameters as inputs. The equilibrium
computation also takes as inputs the amenities and marginal costs of the neighborhoods,
which we obtain as the residuals from the housing demand and supply equations, re-
spectively. We focus our equilibrium comparisons on the period after the subsidy was
introduced and obtain counterfactual equilibrium prices by setting the subsidy to zero.
Matching the structural double difference in prices with the reduced-form DiD yields
an inverse supply elasticity of η = 0.33.19

Robustness. We provide two robustness checks for the estimation of the inverse hous-
ing supply elasticity. Later, in Section 7.1, we present the results of the counterfactuals
using the parameter estimates from these robustness checks. For the first robustness
check, we internally calibrate η in the same way but allow amenities to change between
the equilibria with and without the subsidy, following their observed evolution. Fig-
ure A.14 in Appendix A shows that amenities increase on average by 14.8% in both
regions after the introduction of the subsidy. Thus, in this first robustness, we let ameni-
ties grow by that magnitude between the equilibria without and with the subsidy.20 The
inverse supply elasticity obtained in this context is 0.25, very similar to the benchmark
result.

In the second robustness check, we estimate η using Equation 13 and employ a de-
mand shifter as an instrument. Specifically, we use the time-varying amenities (ξjt) as
an instrument for the quantity in Equation 13. The identifying assumption is that these
amenities are uncorrelated with the changes in the local construction costs. Table A.2

18This internal calibration procedure mirrors the one implemented by Berger et al. (2022) in their study
of market power in the US labor market.

19This calibrated parameter implies a more elastic housing supply compared to available estimates
(Saiz, 2010; Alves, 2021; Baum-Snow & Han, 2023). Ours is a monthly-level elasticity referring to property
owners’ decisions to sell their houses. This implies that we look at a short-term selling decision. In
contrast, the available estimates in the literature are measured over two or three decades and focus on
new housing units, which take more time to produce and sell.

20Since the demand model has an outside option, this parallel increase in time-varying amenities can
still affect the results of the calibration.
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presents the estimates of η under different specifications, including the instrumental
variables estimates. Our preferred specification yields an estimate of η = 0.29, also very
similar to our calibrated result.

7 Counterfactuals
We solve for a set of counterfactual equilibria of the estimated model to achieve three
goals. First, we decompose a structural equivalent of our DiD estimate into the three
components presented in Section 2. This gives us a measure of the bias in the benchmark
reduced-form DiD estimate for the whole city. Second, we recover the incidence of
the subsidy according to the model, and contrast it with the one obtained considering
the alternative reduced-form DiD estimates. Third, we show that, as suggested by our
decomposition formula in Section 2 and by the variety of reduced-form estimates in
Section 4, neighborhood-level contamination is negatively correlated with the degree
of heterogeneity between subsidized and unsubsidized areas, and positively correlated
with diversion ratios.

7.1 DiD Decomposition and the Incidence of the Subsidy

Table 5 presents the decomposition of the DiD term and the incidence of the subsidy.
The second column features the results obtained with the structural model and the first
one their reduced-form counterparts, when available. Structural results are averages
across the 32 months of the “post” period. The two DiD terms of the first row are iden-
tical by construction since we use this moment to calibrate the inverse housing supply
elasticity parameter.

The five rows in the center of Table 5 present the decomposition of the DiD term fol-
lowing Equation 4. The ATT term is the difference in the average equilibrium prices
of the subsidized neighborhoods with and without the subsidy. The autarky term is
the change in average equilibrium prices across subsidized neighborhoods due to the
subsidy without allowing for re-sorting between neighborhoods. We then calculate the
spillover-on-switchers’ term as the difference between the ATT and autarky terms. That
effect is large, implying that the reduction in housing prices in the subsidized neighbor-
hoods would have been much more pronounced if buyers had not reacted to the policy
by re-sorting into these areas.

The contamination term is the most important since it measures the difference be-
tween the DiD term and the ATT. We quantify contamination as the difference in the
average equilibrium prices of unsubsidized neighborhoods with and without the sub-
sidy. The magnitude of contamination, of around a quarter of the ATT, indicates that
the DiD term substantially underestimates the impact of the policy on the prices of the
targeted neighborhoods.

The last row of Table 5 shows that the presence of contamination has implications for
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Table 5: Decomposition of DiD Results Using the Structural Model

Reduced-Form Structural

DiD −181 −181

ATT −242
Autarky −404

Spillover on switchers 162
Contamination −61

Contamination/ATT 25.2%

Incidence 59.2% 79.1%

Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: The DiD reduced-form estimate is taken from Column (3) of Table 2. The structural DiD coincides

with the reduced-form estimate by construction. The structural ATT, autarky, spillover on switchers, and
contamination terms are computed as the average difference in the equilibrium prices with and without
the subsidy for different sets of neighborhoods in different counterfactuals. The ATT is computed for
the regular counterfactual and subsidized neighborhoods only. The autarky term is also computed for
subsidized neighborhoods but with a subsidized equilibrium in which households are not allowed to re-
sort across neighborhoods. The spillover on switchers’ term is the difference between ATT and autarky.
The structural contamination considers the regular counterfactuals with and without the subsidy and is
computed with unsubsidized neighborhoods only.

the conclusion regarding the incidence of the policy. We calculate the incidence as the
effect on the prices of the subsidized neighborhoods divided by the subsidy.21 While
the incidence according to the structural model is 79%, the one calculated using the
reduced-form DiD is 20 percentage points lower.

We illustrate the relevance of our incidence result with the average price faced by a
consumer buying a housing unit in this city. The average price of houses in subsidized
areas in the pre-period was 90,000 USD. If the subsidy had an incidence of 100%, im-
plying that it was passed completely to consumers, each consumer would have saved
18,000 USD. However, tax breaks are typically not entirely reflected in prices, and it
is therefore an important economic question to establish which share of the tax break
reaches its intended beneficiaries. In our context, a researcher guided by the reduced-
form estimate of the incidence (59.2%) would have concluded that our consumer saved
around 10,649 USD. However, once contamination is considered, the incidence of 79.1%
implies a savings of 14,238 USD. The difference of 3,589 USD amounts to 24.0% of
Uruguay’s GDP per capita in 2011, the year the policy was introduced.

Robustness. We compute the DiD decomposition under the alternative estimates of
the inverse supply elasticity presented in Section 6.2. Table A.5 presents the results of
this exercise. As indicated by the decomposition formula, contamination grows with
the elasticity of housing prices to quantities. Contamination reaches 22.6% with IV-
estimated elasticity (η = 0.29) and 9.7% when we calibrate the elasticity allowing ameni-
ties to grow over time (η = 0.25). Thus, our main conclusion on the existence of large
contamination in the setting under consideration is robust to these different methods of

21We obtain the amount of the subsidy by applying the 20% rate over the price that results from eval-
uating the inverse supply curve (without the subsidy) of the subsidized neighborhoods at the quantities
obtained in the equilibrium with the subsidy.
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computing the inverse housing supply elasticity.

7.2 Determinants of Contamination and Bias

The previous analysis showed that contamination can lead to wrong conclusions about
the effect of a place-based policy. To guide applied work in other contexts, it is use-
ful to understand when contamination may matter more. We next show that the joint
consideration of our decomposition formula, reduced-form estimates, and structural
decomposition results consistently indicates that contamination increases with the in-
tensity of demand-side re-sorting, which in turn correlates with the similarity between
subsidized and unsubsidized areas. This implies that, conditional on having parallel
pre-trends, applied researchers should prefer comparisons between less homogeneous
areas when place-based policies may induce substantive re-sorting.

Panel a) of Figure 4 shows the positive correlation between contamination and demand-
side re-sorting. We plot, for every pair of subsidized and non-subsidized neighborhoods
along the border of the policy, the structural contamination as a share of ATT against the
heterogeneity index introduced in Section 4. Going back to the reduced-form relation-
ship between the border DiD estimate and the degree of heterogeneity across the border
presented in both Table 3 and Figure A.10, the results in Figure 4 indicate that contami-
nation can explain why one may not reject the hypothesis that the policy had zero effects
when comparing very homogeneous areas.

The second piece of evidence, presented in panel b) of Figure 4, focuses on the whole
city and shows how contamination is strongly and positively correlated with diversion
ratios. Consistent with our decomposition formula, the correlation not only has the
expected sign but it is also linear. Leveraging that we have the two terms for all neigh-
borhoods and all months in the post period, we estimate the regression equivalent of the
figure in panel b) of Figure 4, including a rich set of controls. The results in Table A.3 in
Appendix A show a robust and positive relationship when controlling for none, either,
and both neighborhood and month × year fixed effects.
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Figure 4: Contamination, Border Heterogeneity and Diversion Ratios
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(b) Contamination and Diversion Ratios

Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: The y-axis in both panels presents contamination as a percentage of the ATT. Contamination is
obtained as the difference in the housing prices of unsubsidized neighborhoods between the equilibria
with and without the subsidy. The ATT is computed analogously but for subsidized neighborhoods.
The straight red line represents the predicted value from a linear regression of the y-variable on the x-
variable and the grey area is the 95% confidence interval for that prediction. In panel a), the 13 dots
represent all the neighborhood pairs lying across the border of the policy. The x-axis shows the average
heterogeneity index (introduced in Section 4) for the transactions belonging to the two neighborhoods of
the pair. In panel b), the dots represent all the subsidized-unsubsidized neighborhood pairs. The x-axis
shows the diversion ratio between the pair, calculated as the quotient between two partial derivatives,
both derivatives taken with respect to the price of the subsidized member of the pair. The numerator of
that quotient takes the partial of the demand of the unsubsidized member of the pair and the denominator
the partial of the demand of the subsidized one.

Finally, our formula states that not only contamination but also the ATT are corre-
lated with the intensity of demand-side substitution. Since the spillover-on-switchers
term is part of the ATT, more of it would lead to lower DiD estimates of the impact
of the subsidy. Similarly to Figure 4 above, Figure A.13 in Appendix A shows that
the absolute value of the ATT effectively increases with the degree of heterogeneity be-
tween the neighborhoods across the border. Although this relationship is not relevant
as a source of bias, it matters for applied work for two reasons. First, if ATT effects are
heterogeneous due to re-sorting, applied researchers focusing on very homogeneous ar-
eas would get systematically lower estimates. Second, and more substantively, a large
spillover-on-switchers effect can be normatively relevant when higher prices offset part
of the benefits of the subsidy for incumbent households.

7.3 The Role of Amenities

We next examine how the paper’s main conclusions are affected when allowing for
changes in amenities in response to the policy. There is evidence that new construc-
tion can increase surrounding housing prices (Baum-Snow & Marion, 2009; Diamond
& McQuade, 2018), including for the policy we study (González-Pampillón, 2022). In
our benchmark model, amenities vary over time but do not respond endogenously to
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the policy.22 As discussed in Section 6.2, Figure A.14 shows that amenities in our setting
grow over time and that our estimates of η are robust to controlling for this growth.

Figure A.15 applies the graphical decomposition from Section 2 to illustrate how im-
proved amenities in the subsidized areas would affect the DiD estimate. Two forces
reduce the absolute value of the DiD. First, higher amenities in subsidized areas raise
prices there, lowering the absolute value of the ATT. Second, higher amenities would
induce a new round of relocation from unsubsidized into subsidized areas, further re-
ducing prices in the latter and increasing contamination.

Table A.4 quantifies these effects. A gentrification scenario with a 20% amenity in-
crease in the subsidized neighborhoods reduces the DiD term from -181 in our bench-
mark to -40.

These results have a first-order implication for interpreting our reduced-form esti-
mates: a relatively low incidence could, in principle, reflect changes in amenities rather
than contamination. However, two pieces of evidence allow us to refute this hypothesis.
First, following the logic of Turner et al. (2014), positive spillovers from new construc-
tion should increase prices just across the border in non-subsidized areas. This implies
lower contamination and higher incidence, exactly the opposite of what we observe.
Second, DiD estimates should decline in absolute value as control areas farther from the
border are considered, because positive spillovers from subsidized areas would dissi-
pate with distance. Again, we find the opposite pattern.

8 Conclusion
Violations of the stable unit treatment value assumption (SUTVA) are a common threat
to the identification of the effects of place-based policies. Because these policies are typ-
ically not randomly assigned, their analysis relies on quasi-experimental methods, with
difference-in-differences being one of the most important. We discuss how difference-
in-differences estimates may not recover the effect of policies in contexts where the re-
sorting of agents changes the equilibrium outcomes of non-targeted units.

We illustrate how SUTVA violations can have serious consequences for the welfare
conclusions of studies of large place-based interventions. We provide guidelines for
applied work to detect contexts in which this might be more of a concern, and how to
recover the true effect of the policy, subject to the availability of supply and demand
elasticity estimates. When these estimates are not available and our guidelines detect a
concern, we emphasize that, conditioning on parallel trends, researchers should avoid
focusing on narrow comparisons of homogeneous units.

We illustrate our argument by studying a large place-based policy aimed at boosting
housing construction in lagging areas of Montevideo, Uruguay. In part because of our

22Recent work has made progress in endogenizing amenities in structural models (Almagro &
Domınguez-Iino, 2025).
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methodological focus and restricted period, our study does not constitute a complete
evaluation of the effects of this policy. Future work can adopt a longer perspective in
which the policy may induce dynamic responses in housing supply, housing demand,
and endogenous urban amenities, which are not present in our short-run analysis and
can alter the overall conclusions on the impact of the policy.
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A Appendix: Figures and Tables

Figure A.1: Visual Representation of Re-Sorting with Two or Multiple Areas
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Source: Authors’ own illustration.

Figure A.2: Montevideo by Subsidy Status - 500m Buffer
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Source: Authors’ own illustration using official shapefiles from the Geomatic Service of Uruguay.
Notes: The thicker line shows the border of the policy and the thinner lines the neighborhood limits. We
defined neighborhoods using a spatial clustering algorithm, as explained in Appendix C. In panel a),
the classification of neighborhoods into subsidized or unsubsidized follows the borders of the policy as
defined in official government documents. The figure further displays a 500-meter buffer around the
border of the policy.
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Figure A.3: Average Years of Education by Census Tract
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Source: Authors’ illustration using official shapefiles from the Geomatic Service of Uruguay and micro-
data from the 2011 Uruguayan Census.
Notes: The tones of blue reflect the average years of education of the adult population living in each “seg-
mento censal”, an administrative unit comparable in size to a US census tract.
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Figure A.4: Residualized Housing Prices by Subsidy Status - City-Wide

−250

0

250

500

2010 2011 2012 2013 2014
Date

M
ea

n 
R

es
id

ua
l (

U
S

D
)

Subsidy Status Subsidized Unsubsidized

Source: Authors’ calculations using housing transaction data from the National Registry Office in
Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: The graph plots, separately for transactions in the subsidized or unsubsidized areas, the average
residualized price in each year-month. This residualized price is obtained as the residual of a regression
of housing prices per square meter on a polynomial of degree three on transaction area in square meters,
building age in years, distance to the coast in meters, and indexes of construction category, construction
condition, type of ceiling, and if there is ongoing construction work on the property. The graph considers
all housing transactions in the City of Montevideo.
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Figure A.5: Residualized Housing Prices by Subsidy Status - 500m Buffer Across the
Border
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Source: Authors’ calculations using housing transaction data from the National Registry Office in
Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: The graph plots, separately for transactions in the subsidized or unsubsidized areas, the average
residualized price in each year-month. This residualized price is obtained as the residual of a regression
of housing prices per square meter on a polynomial of degree three on transaction area in square meters,
building age in years, distance to the coast in meters, and indexes of construction category, construction
condition, type of ceiling, and if there is ongoing construction work on the property. The regression, and
subsequently the graph, only considers transactions that are less than 500 meters away from the border
of the policy. This 500-meter buffer is shown in Figure A.2 in Appendix A.
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Figure A.6: Monthly Differences in Housing Prices Between Subsidized and Unsubsi-
dized Areas Measured with respect to One Month Before the Starting Date of the Policy
- City-Wide

−600

−300

0

300

600

−22 −20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time From Treatment

E
st

im
at

e

Source: Authors’ calculations using housing transaction data from the National Registry Office in
Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: The graph plots the estimated coefficients, with their 95% confidence interval, of all year-month ×
subsidy dummies in a regression of housing prices per square meter on a polynomial of degree three on
transaction area in square meters, building age in years, distance to the coast in meters, and indexes of
construction category, construction condition, type of ceiling, and if there is ongoing construction work
on the property. The regression, and consequently the graph, considers all housing transactions in the
city. The omitted fixed effect is the month-year combination just before the starting date of the policy.
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Figure A.7: Monthly Differences in Housing Prices Between Subsidized and Unsubsi-
dized Areas Measured with respect to One Month Before the Starting Date of the Policy
- 500m Buffer Across the Border
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Source: Authors’ calculations using housing transaction data from the National Registry Office in
Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: The graph plots the estimated coefficients, with their 95% confidence interval, of all year-month ×
subsidy dummies in a regression of housing prices per square meter on a polynomial of degree three on
transaction area in square meters, building age in years, distance to the coast in meters, and indexes of
construction category, construction condition, type of ceiling, and if there is ongoing construction work
on the property. The regression, and subsequently the graph, only considers transactions that are less
than 500 meters away from the border of the policy. This 500-meter buffer is shown in Figure A.2 in
Appendix A. The omitted fixed effect is the month-year combination just before the starting date of the
policy.
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Figure A.8: Rings Around the Border of the Policy: Unsubsidized Area
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Source: Authors’ own illustration using official shapefiles from the Geomatic Service of Uruguay.
Notes: The thicker line shows the border of the policy and the thinner lines the neighborhood limits. Each
individual buffer covers the part of the unsubsidized area that is at most the distance indicated by the
respective value in bold from the policy border. Larger buffer sizes naturally nest smaller buffer sizes.

Figure A.9: How Border Z-Scores are Computed
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Point Index = Median $ Median $- Property Index = Weighted Mean of Point Indices 

Source: Authors’ own illustration.
Notes: The figure illustrates the method we use to compute a measure of heterogeneity along the border
of the policy. The left panel shows how we compute the index of heterogeneity for a particular point on
the policy border. The right panel shows how we aggregate point indices for individual properties. For
more details on the calculation of this measure, see Section 4.
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Figure A.10: Estimated Treatment Effect as a Function of Heterogeneity
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Source: Authors’ calculations using housing transaction data from the National Registry Office in
Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: The graph plots the marginal effects, with their 95% confidence interval, for different values of the
Z-score, of the interaction of that score with the difference-in-differences term in the regression estimated
in Column (2) of Table A.1. This regression controls for neighborhood and year-month fixed effects poly-
nomial of degree three on transaction area in square meters, building age in years, distance to the coast
in meters, and indexes of construction category, construction condition, type of ceiling, and if there is
ongoing construction work on the property. The regression is estimated using transactions located less
than 500 meters away from the border of the policy. This 500-meter buffer is shown in Figure A.2 in
Appendix A. The Z-score measures the average difference in housing prices between both sides of the
border of the policy. For more details on the calculation of this measure, see Section 4.
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Figure A.11: Average Housing Prices by Subsidy Status - Structural Model
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Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: The graph plots, separately for neighborhoods in the subsidized or unsubsidized areas, the average
equilibrium prices for each year-month.
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Figure A.12: Monthly Differences in Housing Prices Between Subsidized and Unsubsi-
dized Areas Measured with respect to the Time Period One Month Before the Starting
Date of the Policy - Structural Model
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Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: The graph plots the estimated coefficients, with their 95% confidence interval, of all year-month ×
subsidy dummies of a regression of equilibrium housing prices on month-year × subsidy dummies. The
omitted fixed effect is the month-year combination just before the starting date of the policy.
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Figure A.13: ATT and Border Heterogeneity - Structural Model
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Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: Each of the 13 dots in the figure represents a subsidized-unsubsidized neighborhood pair. These
are all the neighborhood pairs lying across the border of the policy.Figure A.2 in the Appendix A provides
a map of the neighborhoods with a focus on the border. The x-axis shows the diversion ratio. Using the
estimated demand system presented in Table 4, the diversion ratio is calculated as the quotient between
two partial derivatives, both of taken with respect to the price of the subsidized member of the pair. The
numerator of that quotient takes the partial derivative of the demand of the unsubsidized member of
the pair with respect to the price of the subsidized member and the denominator the partial derivative
of the demand of the subsidized member with respect to its price. The y-axis presents the normalized
ATT for the subsidized member of the pair. The ATT is obtained as the difference in the equilibrium
housing prices in counterfactual scenarios with and without the subsidy for the subsidized member of
each pair of neighborhoods. The normalization is performed by dividing by the average ATT across all
neighborhoods. The straight red line represents the predicted value from a linear regression of the y-
variable on the x-variable. The shaded grey area around it represents the 95% confidence interval around
the predicted value.
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Figure A.14: Evolution of Structural Amenities Across Subsidized and Unsubsidized
Neighborhoods
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Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: Amenities are obtained by removing the price effect from the mean utility of each product in each
period. The individual lines represent the time series of the sales-weighted mean of these amenities by
subsidy status.

Figure A.15: DiD with Re-Sorting between Neighborhoods A and B, and Improving
Amenities in A

Quantity

Price

Quantity
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Notes: See section Section 2 for details on the notation and general logic behind the graphs. a and a′ are
two-element vectors featuring the amenity levels in areas A and B. The second vector has a higher value
of amenities compared to the first one for area A and the same value for area B.
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Table A.1: Difference-in-Differences Regressions - Heterogeneity

Dependent Variable:

USD per Square Meter

(1) (2)

Post × Treated −61 −63
(38) (34)

Post × Treated × Z-Score - −55∗∗∗

(14)

Housing Characteristics ✓ ✓
Fixed Effect - Geography Neighborhood Neighborhood
Fixed Effect - Time Year × Month Year × Month
No. Obs 7,579 7,578
Data 500m Buffer 500m Buffer

Source: Authors’ calculations using housing transaction data from the Na-
tional Registry Office in Uruguay and matched data on property charac-
teristics from the country’s national cadaster.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the

neighborhood level and provided in parentheses. The “Housing Charac-
teristics” controls consist of a polynomial of degree three on transaction
area in square meters, building age in years, distance to the coast in me-
ters, and indexes of construction category, construction condition, type of
ceiling, and if there is ongoing construction work on the property. The 500
meter buffer restriction requires that the transaction is located less than 500
meter away from the border of the policy. This 500 meter buffer is shown
in Figure A.2 in Appendix A. The Z-score measures the average difference
in housing prices between both sides of the border of the policy. For more
detail on the calculation of this index see Section 4.

Table A.2: Supply Estimation

Dependent Variable:

Logarithm of Price

(1) (2) (3) (4)

Logarithm of Quantity -0.007 -0.017** 2.115*** 0.290***
(0.014) (0.008) (0.170) (0.031)

Observations 2,646 2,646 2,646 2,646
Method OLS OLS IV IV
Fixed Effect - Geography - Neighborhood - Neighborhood
Fixed Effect - Time - Year × Month - Year × Month

Source: Authors’ calculations using housing transaction data from the National Registry Office
in Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are provided in parentheses. All four

regressions estimate the inverse supply regression given by Equation 13. In that regression, ob-
servations are at the neighborhood × month-year level. In Columns (3) and (4), the instrumental
variable used is the time-varying amenity ξjt from the demand regression.
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Table A.3: Contamination and Diversion Ratio

Dependent Variable:

Contamination

(1) (2) (3) (4)

Diversion Ratio 2.57*** 2.77*** 2.51*** 2.70***
(0.07) (0.08) (0.06) (0.07)

Observations 18,240 18,240 18,240 18,240
Fixed Effect - Geography - Neighborhood - Neighborhood
Fixed Effect - Time FE - - Year × Month Year × Month

Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. The four columns present the

estimation results of a regression of contamination, measured in US dollars, on the diversion ratio. The
observations in those regressions are all the possible pairs of subsidized-unsubsidized neighborhoods.
Contamination is obtained as the difference in the equilibrium housing prices in counterfactual scenarios
with and without the subsidy for unsubsidized neighborhoods. Using the estimated demand system
presented in Table 4, the diversion ratio is calculated as the quotient between two partial derivatives,
both of them taken with respect to the price of the subsidized member of the pair. The numerator of that
quotient takes the partial of the demand of the unsubsidized member and the denominator takes the
partial of the demand of the subsidized member.

Table A.4: Structural Decomposition when Amenities Change in the Subsidized Neigh-
borhoods.

DiD ATT Contamination % Cont./ATT
(1) (2) (3) (4)

Benchmark -181.1 -242.4 -61.4 25.3

Amenities deteriorate in subsidized neighborhoods:

-5% -215.9 -262.1 -46.2 17.6
-10% -250.5 -282.0 -31.5 11.2
-15% -284.9 -302.2 -17.3 5.7
-20% -319.0 -322.6 -3.6 1.1

Amenities improve in subsidized neighborhoods:

+5% -146.0 -223.1 -77.0 34.5
+10% -110.8 -204.0 -93.2 45.7
+15% -75.4 -185.2 -109.8 59.3
+20% -39.8 -166.7 -126.9 76.1

Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: ATT is obtained as the difference in the average equilibrium housing prices across subsidized

neighborhoods with and without the subsidy. Contamination is obtained analogously but for unsubsi-
dized neighborhoods. DiD is ATT minus contamination.
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Table A.5: Structural Decomposition under Different Methods of Obtaining the Inverse
Supply Elasticity.

η DiD ATT Cont. Cont./ATT
(1) (2) (3) (4) (5)

Calibrated (Benchmark) 0.33 -181.1 -242.4 -61.4 25.3
Calibrated (Amenity Growth) 0.25 -181.1 -200.5 -19.4 9.7
Estimated 0.29 -179.3 -231.5 -52.2 22.6

Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: ATT is obtained as the difference in average equilibrium housing prices in the subsidized neigh-

borhoods with and without the subsidy. Contamination is computed analogously but for the unsubsi-
dized neighborhoods. DiD is ATT minus contamination. In the “Benchmark” and “Estimation η” sce-
narios, amenities have the same value in the equilibrium with and without the subsidy. The scenario
“Amenity Growth” introduces lower amenities in the pre-world counterfactual such that the difference
in amenities between the pre and post-worlds equals the average change in the estimated amenities of
the unsubsidized neighborhoods between the average of the whole post period and the month before the
starting date of the policy.
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B Appendix: Deriving the DiD Decomposition
The derivations for the approximation results of the generalized difference-in-differences
(DiD) given in Equation 5 and Equation 6 are given below.

We specify demand for housing in a neighborhood j in time-period t at a given vec-
tor of market prices pt to be given by Dj(pt). The inverse housing supply function in
neighborhood j in time-period t at quantity qjt is assumed to be given by P j

S(q
j
t ). Inverse

supply is thus only a function of within-neighborhood demand. Without loss of general-
ity, we assume that the policy of interest is a housing construction subsidy implemented
in neighborhood A while neighborhood B is not targeted by the policy.23 The implied
DiD empirical specification will always compare neighborhood A and neighborhood
B.

Furthermore, we assume that equilibrium changes can be approximated by partial
derivatives. We abstract away from any second- or higher-order effects. We start by
assuming an exogenous shock (e.g. a subsidy) that moves the equilibrium to the new
point (q2, p2) and then people react by re-sorting to the final equilibrium, through the
demand effects. Please note that period t = 1 reflects the pre-policy equilibrium. Period
t = 2 indicates the “artificial” time period in which the policy only affects the targeted
neighborhood(s) in autarky. Period t = 3 is then the new post-policy equilibrium.

B.1 One Subsidized and One Unsubsidized

In reaction to the subsidy, the price in neighborhood A drop from pA1 to pA2 , with the
corresponding change in quantities from qA1 to qA2 . In reaction to this exogenous change
in (relative) prices, i.e. (pA2 − pA1 ), consumers in all neighborhoods re-evaluate their
demand choices. The final change in equilibrium housing quantity in neighborhood A

is given by Equation B.1, and in neighborhood B by Equation B.2.

qA3 − qA2 ≈ ∂DA

∂pA
× (pA2 − pA1 ) (B.1)

qB3 − qB2 ≈ ∂DB

∂pA
× (pA2 − pA1 ) (B.2)

Inserting these changes in equilibrium quantities into the local inverse housing sup-
ply equations, one can compute the changes in equilibrium prices.

pA3 − pA2 ≈∂PA
S

∂qA
× (qA3 − qA2 )

≈∂PA
S

∂qA
× ∂DA

∂pA
× (pA2 − pA1 )

(B.3)

23In the traditional difference-in-differences (DiD) literature, neighborhood A would be considered the
“treated unit” and neighborhood B would be the “control unit”.
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pB3 − pB2 ≈∂PB
S

∂qB
× (qB3 − qB2 )

≈∂PB
S

∂qB
× ∂DB

∂pA
× (pA2 − pA1 )

(B.4)

Equation B.3 highlights three terms that determine the final price change in neighbor-
hood A. First, it depends on the subsidy’s “autarky” effect, i.e. (pA2 − pA1 ). Second, it
is also determined by how price-sensitive housing demand in neighborhood A is with
respect to the local price. Third, the responsiveness of local inverse supply also scales
the change in final prices.

Similar to above, the size of the final price change in neighborhood B again depends
on the subsidy’s autarky effect in neighborhood A, and on the responsiveness of local
inverse supply in neighborhood B. What, however, links the two neighborhoods is the
partial derivative of demand for neighborhood B housing with respect to the price in
neighborhood A. This partial derivative is a direct measure of demand substitution
patterns between the two neighborhoods. If consumers do not consider these neigh-
borhoods to be substitutes, this partial derivative is equal to zero. Thus, the local price
neighborhood B does not change. If consumers, on the other hand, consider the two
neighborhoods to be substitutes, this partial derivative is positive. The price in neigh-
borhood B would then also change in reaction to the subsidy, despite the policy’s scope
being limited to neighborhood A.

Inserting these two expressions for final price changes into the generalised version of
the DiD estimator given in Equation 4, we arrive at Equation 5.

β̂DiD = (pA2 − pA1 ) + (pA3 − pA2 )− (pB3 − pB2 )

≈ (pA2 − pA1 )+

+ (pA2 − pA1 )×
∂PA

S

∂qA
× ∂DA

∂pA

− (pA2 − pA1 )×
∂PB

S

∂qB
× ∂DB

∂pA

≈ (pA2 − pA1 )×
[
1 +

∂PA
S

∂qA
× ∂DA

∂pA
− ∂PB

S

∂qB
× ∂DB

∂pA

]
≈ (pA2 − pA1 )︸ ︷︷ ︸

Autarky in A

×
[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Spillover on the switchers Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Contamination Scaling

]
(B.5)

with DRA,B being the diversion ratio between housing in neighborhood A and hous-
ing in neighborhood B. While the cross-price partial discussed previously is a non-
normalized measure of substitutability between neighborhoods A and B, the diversion
ratio is on the other hand a normalized measure of substitutability. It describes the ratio
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between the change in demand for neighborhood B and the change in the demand for
neighborhood A when the price in A changes:

DRA,B =
∂DB/∂pA

∂DA/∂pA
(B.6)

B.2 Two Subsidized and One Unsubsidized

Building on the insights gained from Subsection B.1, we now add a third neighborhood
C. Without loss of generality, we assume that neighborhood C is a neighborhood tar-
geted by the policy and thus also subsidized.

Similar to before, the analysis starts with final changes in housing demand. The struc-
ture of Equation B.7 and others is very similar to above, with one exception. Because
housing supply in neighborhood C is now also subsidized by the policy, an additional
exogenous change in prices, i.e. (pC2 − pC1 ), needs to be accounted for when determining
final demand changes.

qB3 − qB2 ≈ ∂DB

∂pA
× (pA2 − pA1 ) +

∂DB

∂pC
× (pC2 − pC1 ) (B.7)

qA3 − qA2 ≈ ∂DA

∂pA
× (pA2 − pA1 ) +

∂DA

∂pC
× (pC2 − pC1 ) (B.8)

qC3 − qC2 ≈ ∂DC

∂pA
× (pA2 − pA1 ) +

∂DC

∂pC
× (pC2 − pC1 ) (B.9)

Using the inverse supply equation for neighborhood B, one can derive an expression
for the final price change in neighborhood B.

pB3 − pB2 =
∂PB

S

∂qB
× (qB3 − qB2 )

=
∂PB

S

∂qB
×

(
∂DB

∂pA
× (pA2 − pA1 ) +

∂DB

∂pC
× (pC2 − pC1 )

) (B.10)

Using the same approach, we can derive an expression for (pA3 −pA2 ) using the inverse
supply equation for neighborhood A.

pA3 − pA2 =
∂PA

S

∂qA
× (qA3 − qA2 )

=
∂PA

S

∂qA
×

(
∂DA

∂pA
× (pA2 − pA1 ) +

∂DA

∂pC
× (pC2 − pC1 )

) (B.11)

Inserting these two expressions for final price changes into the generalised version of
the DiD estimator given in Equation 4, one arrives at Equation B.12.
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β̂DiD = (pA3 − pA1 )− (pB3 − pB1 )

= (pA3 − pA2 ) + (pA2 − pA1 )− (pB3 − pB2 )

≈ (pA2 − pA1 )

+ (pA2 − pA1 )×
(
∂PA

S

∂qA
× ∂DA

∂pA
− ∂PB

S

∂qB
× ∂DB

∂pA

)
+ (pC2 − pC1 )×

∂PA
S

∂qA
× ∂DA

∂pC

− (pC2 − pC1 )×
∂PB

S

∂qB
× ∂DB

∂pC

≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky in A

×
[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Direct Re-Sorting Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Direct Contamination Scaling

]

+ (pC2 − pC1 )︸ ︷︷ ︸
Autarky in C

×
[

∂PA
S

∂qA
× ∂DA

∂pC︸ ︷︷ ︸
Indirect Spillover on the switchers Scaling

− ∂PB
S

∂qB
× ∂DB

∂pC︸ ︷︷ ︸
Indirect Contamination Scaling

]

(B.12)

The final rewriting of the generalized version of the DiD estimator yields the same
decomposition as in Subsection B.1 alongside one additional summand. The additional
summand however has a very similar structure with a re-sorting term and a contami-
nation term both scaling neighborhood C’s autarky effect. Given that neighborhood C

is not part of the implied DiD empirical specification which compares neighborhood A

and neighborhood B, we refer to these terms as “indirect spillover on the switchers”
and “indirect contamination”. The former, i.e. the autarky change in C multiplied by
the indirect spillover on the switchers scaling, captures the effect on the price in neigh-
borhood A from people moving from A to C due to the subsidy-induced price decrease
in the latter. This moderates the price increase in neighborhood A attributable to direct
re-sorting. The indirect contamination, i.e. the autarky change in C multiplied by the
indirect contamination scaling, captures the effect on the price in neighborhood B as
people move from B to C due to the subsidy-induced price decrease in the latter. This
increases the contamination in neighborhood B as prices fall even further there.

Nota Bene If neighborhood C were actually unsubsidized one can set (pC2 − pC1 ) = 0,
and thus the entire derivation is identical to the situation described in Subsection B.1.

B.3 Multiple Subsidized and Multiple Unsubsidized

Generalizing the results from Subsection B.2 to a setting with many subsidized and un-
subsidized areas is straightforward. In Equation B.12 one can see that the effect of one
additional subsidized neighborhood on the decomposed DiD estimator formula is one
additional summand. On the other hand, as noted above, any additional unsubsidized
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neighborhood has no effect on the decomposition, as their effect is already captured in
the direct spillover on the switchers term. Equation B.13 thus captures the generaliza-
tion to many subsidized (and unsubsidized) neighborhoods. Please note that we are
again only using neighborhoods A and B to decompose the DiD estimator.

β̂DiD ≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky in A

×

[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Direct Spillover-on-switchers Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Direct Contamination Scaling

]

+
∑
k∈K

(pk2 − pk1)︸ ︷︷ ︸
Autarky in k

×

[
∂PA

S

∂qA
× ∂DA

∂pk︸ ︷︷ ︸
Indirect Spillover-on-switchers Scaling

− ∂PB
S

∂qB
× ∂DB

∂pk︸ ︷︷ ︸
Indirect Contamination Scaling

] (B.13)

with K denoting the set of all neighborhoods subsidized by the policy of interest,
excluding neighborhood A.

In the main text, we use Equation B.14. Equation B.14 is a simple re-writing of Equa-
tion B.13 in order to incorporate diversion ratios. Such reformulation allows for easier
comparison with Equation 5.

β̂DiD ≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky in A

×

[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Direct Spillover-on-switchers Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Direct Contamination Scaling

]

+
∑
k∈K

(pk2 − pk1)︸ ︷︷ ︸
Autarky in k

×

[
∂PA

S

∂qA
× ∂Dk

∂pk
×DRk,A︸ ︷︷ ︸

Indirect Spillover-on-switchers Scaling

− ∂PB
S

∂qB
× ∂Dk

∂pk
×DRk,B︸ ︷︷ ︸

Indirect Contamination Scaling

] (B.14)

with K denoting the set of all neighborhoods subsidized by the policy of interest,
excluding neighborhood A.
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C Appendix: Neighborhood and Nest Definition

C.1 Spatial Clustering

We employ the spatial clustering algorithm “SKATER” (Spatial ’K’luster Analysis by
Tree Edge Removal), developed by Assunção et al. (2006), because it has four conve-
nient features for our context. First, unlike regular, non-spatial clustering techniques,
this algorithm guarantees spatial contiguity of the resulting units. Second, it allows
for the introduction of a constraint on the minimum number of observations each unit
should have. We need this feature to make sure that each neighborhood has enough
transactions to compute the average price and market shares we use in the estimation
of the demand model. Third, the algorithm operates by maximizing the internal homo-
geneity of the resulting units in terms of a variable defined by the researcher. Finally, the
procedure allows one to set a target number of units. This target has a lower priority in
the functioning algorithm and may not be reached to satisfy the other constraints.

We apply the spatial clustering algorithm separately to the subsidized and unsubsi-
dized sections of the city such that the entire area of each neighborhood falls into only
one of those two categories. We indicate the algorithm to use the average number of
years of education of the tracts from the 2011 population census to maximize the homo-
geneity of the units. Figure A.3 in Appendix A shows there are huge differences in years
of education across Montevideo. This huge variation, together with the evidence about
the sorting of households along education, makes this variable an ideal candidate for di-
viding the city into different units (Black, 1999; Bayer et al., 2007). We set a minimum of
10 transactions for the average number of monthly sales that each neighborhood should
have, and a target of 50 subsidized and 50 unsubsidized neighborhoods.

The spatial clustering algorithm gives us 49 neighborhoods, 30 subsidized and 19
unsubsidized. We further classify those 49 neighborhoods into six groups, which are the
nests of our nested logit model. For this second classification, we use the same algorithm
as in the first one, except we do not require spatial contiguity for the resulting units, thus
allowing the algorithm to join subsidized and unsubsidized neighborhoods in the same
nest. The results of this operation are presented in the lower half of Figure 3. Each of the
six colors in that figure represents a different nest, the solid line represents the border of
the policy, and the lighter lines show the borders of the neighborhoods.

C.2 External Validity

The “Continuous Household Survey” (Encuesta Continua de Hogares” (ECH) in Span-
ish) provides data on intra-urban residential mobility in Montevideo for the years 2009,
2010 and 2011. Household movements are recorded at the barrio level, a statistical
unit without substantive function in terms of public service provision. We transform
these flows between barrios into flows between our neighborhoods with areal interpo-
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Figure C.1: Matching Process

Barrio J Barrio K

Product A

Product DProduct E

Product F

Product B Product C

Source: Authors’ illustration.
Notes: The graphic illustrates the process of translating the intra-urban residential mobility survey data
from movement between barrios to movement between neighborhoods as defined by our structural
model.

lation.
Figure C.1 illustrates the areal interpolation approach. The survey records aggregate

flows of NJK individuals moving from barrio J to barrio K. To reconcile these barrio-
level flows with the neighborhood definitions employed in our structural model, we
overlay the geospatial shapefile for barrios with the one for structural neighborhoods.
This procedure enables us to partition each barrio into individual components, where
each component lies entirely within a single structural neighborhood.

In the example shown, barrio J spans four structural neighborhoods — A, D, E, and
F — while barrio K encompasses two — B and C. We denote the share of barrio J ’s
area falling within neighborhood A as sA|J , and define similar shares for all compo-
nents. Assuming that movers are uniformly distributed within both the origin and des-
tination barrios, we allocate flows proportionally. Specifically, the imputed number of
individuals moving from neighborhood A to neighborhood B as part of the barrio-level
movement from J to K is given below.

N̂AB|JK = NJK · sA|J · sB|K

Aggregating across all barrio pairs yields an estimate of the total number of movers
between any two structural neighborhoods:

N̂AB =
∑
X,Y

N̂AB|XY

Once we recover the number of switchers for each structural neighborhood pair, we
use this information to test whether individuals are more likely to move between neigh-
borhoods within the same nest than across different nests. To do so, we estimate the
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following linear regression:

N̂AB = δ0 + δ1 ∗ 1(A & B in Same Nest) + oA + dB + β · kmAB + ϵAB (C.1)

Where N̂AB denotes the number of movers from neighborhood A to neighborhood
B. The indicator variable 1(A & B in Same Nest) equals one if neighborhoods A and B

belong to the same nest. The coefficient δ0 captures the baseline number of switchers
between neighborhoods in different nests, while δ1 measures the additional within-nest
mobility. The specification includes origin and destination fixed effects, oA and dB, as
well as a control for the distance between neighborhoods, kmAB. Note the ordering of
subscripts: the first index indicates the origin neighborhood, and the second the desti-
nation.

Table C.1: Flows across and within nests

Dependent Variable:

Number of Switchers going from A to B

(1) (2) (3) (4)

δ0 461.3∗∗∗ − − −
(25.22)

δ1 · 1(A & B in Same Nest) 105.7∗∗ 97.53∗∗ 107.9∗∗ 90.74∗∗

(50.27) (46.17) (44.25) (38.47)

β · kmAB −46.70∗∗∗ −74.16∗∗∗ −80.36∗∗∗ −124.3∗∗∗

(5.372) (9.670) (9.417) (14.78)

Fixed Effect - Geography Origin Neighborhood Destination Neighborhood Origin Neighborhood +
Destination Neighborhood

No. Obs 2,401 2,401 2,401 2,401
Data City-Wide City-Wide City-Wide City-Wide
Mean Number of Products In Same Nest 9.1 9.1 9.1 9.1
Mean Number of Products Outside Same Nest 39.9 39.9 39.9 39.9

Source: Authors’ calculations using intra-urban residential mobility survey data from the National Institute of Statistics (INE) of Uruguay.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the (origin neighbourhood, destination neighbourhood)-level and provided in parentheses.

Estimates in Column 1 of Table C.1 indicate that residential flows between adjacent
neighborhoods (i.e., those with kmAB = 0) within the same nest are 22.9 percent higher
than flows between adjacent neighborhoods belonging to different nests. Moreover, be-
ing part of the same nest effectively offsets a spatial separation of up to 2.26 kilometers,
meaning that same-nest neighborhoods can be further apart and still exhibit comparable
flows to closer neighborhoods in different nests.

The positive, and statistically significant, coefficient for the within-nest indicator vari-
able persists even after controlling for origin and destination fixed effects. These fixed
effects absorb unobserved characteristics of the respective neighborhoods, such as dif-
ferences in population size or inherent desirability. Taken together, these findings pro-
vide external validation for the nesting structure of neighborhoods generated by the
algorithmic approach described above, suggesting that this classification meaningfully
captures patterns of intra-urban residential mobility in Montevideo.
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D Appendix: Trade-off between Parallel Trends
and Contamination

We simulate alternative cities with different fundamentals (amenities and marginal costs)
by introducing random variation in three types of shocks: a) the time invariant shocks
that represent the “base heterogeneity” across locations (terms depending on j), b) the
“time heterogeneity”, which are time shocks that affect all locations at the same time
(terms depending on t), c) the “idiosyncratic heterogeneity” shocks that vary by time
and locations (terms depending on jt).

For the case of amenities (AMjt) each of those three shocks is captured by a specific
random variable, γj , γt and τjt, and we define AMjt = γj + γt + τjt. Analogously, for
marginal costs (Ljt) we have Ljt = Lj + Lt + ϵjt. Table D.1 presents the assumed distri-
butions for the six random variables.

Table D.1: Simulation Setup - Random Variable Distributions

Variable Parameters
Base Heterogeneity γj ∼ N(0, σj) Lj ∼ logN(0, σj)
Time Heterogeneity γt ∼ N(0, σt) Lt ∼ logN(0, σt)
Idiosyncratic Heterogeneity τjt ∼ N(0, σjt) ϵjt ∼ logN(0, σjt)

We extract three main takeaways from the simulation exercise. First, our model al-
lows for parallel trends. We simulate the model for a specific set of parameters (σj =

0.5, σt = 0.3, σjt = 0.2) to show that, despite being very non-linear in both the demand
and the supply side, our model can produce parallel trends between subsidized and un-
subsidized areas. The top graph in Figure D.1 suggests the presence of parallel trends
in a typical DiD graph, while the bottom graph in Figure D.1 presents the typical event
study test for parallel trends in the literature.
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Figure D.1: Simulations for A Specific Set of Parameters (σj = 0.5, σt = 0.3, σjt = 0.2)
and Nesting Coefficient of 0.5
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The second takeaway is to characterize under which type and size of heterogeneity
our model rejects the parallel trends. To analyze this issue we perform simulations over
several values of the heterogeneity parameters. In these simulations, the variance for j
terms (σj) is limited to the set {0.5, 1..0}, while the other two variances (σt and σjt) can
vary along a grid from 0 to 1.5 (in 0.5 increments).

Figure D.2 presents the results for σj = 1 and Figure D.3 shows the results for σj = 0.5.
For each of the three levels of the nested logit nesting parameter (i.e. the plain σ in our
model), the upper panel shows the number of significant coefficients in a regression of
equilibrium prices on a set of interactions between time period and subsidy status and
including neighborhood and time fixed effects. In all of the upper panels, the number
of parallel trend violations is relatively small. They tend to occur when the variation in
the jt dimension is large compared to the variation in t or, vice versa, when variation in
t is large compared to variation in jt.

Finally, we highlight a trade-off between parallel trends violations and the contamina-
tion effect. The bottom graphs of the figures present the size of the contamination effect
as % of the ATT in these simulations. In line with our theoretical predictions, contami-
nation is higher when the substitutability of same-nest products is higher (as measured
by higher nesting coefficients). In the lower panels, contamination is less with the lower
values of the nest coefficient, but that comes at the cost of more violations in parallel
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trends in the upper panels.

Figure D.2: Parallel Trends and Contamination Effects in Simulations for σj = 1
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Figure D.3: Parallel Trends and Contamination Effects in Simulations for σj = 0.5

Nesting = 0.25 Nesting = 0.50 Nesting = 0.75

0.5

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5

0

0.5

1

1.5

σt

σ j
t

0 5 10
Number of Significant Pre−Trend Coefficients

Nesting = 0.25 Nesting = 0.50 Nesting = 0.75

0.5

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5

0

0.5

1

1.5

σt

σ j
t

0.0 0.5 1.0
Mean Contamination

60



E Appendix: Construction of the Price of a Generic
Housing Unit

In order to make housing comparable across space and time, we create a representative
property, which we refer to as “generic housing unit” (GHU). This allows us to keep
property characteristics constant and attribute any changes in price to an improvement
in neighborhood amenities.

We arrive at the price Pjt we employ in our demand and supply estimation exercises
in the paper by first estimating the following regression equation, which shares notation
and many terms with Equation 7:

pijt = γjt +B ∗ f(Xijt) + νijt (D.1)

with pijt denoting the price per square meter of housing transaction i in neighborhood
j at month t. γjt is a vector of neighborhood and month-year fixed effects, and f(Xijt)

is a third-order polynomial evaluated on the set of housing characteristics X . Those
characteristics are: transaction area in square meters, building age in years, distance to
the coast in meters, and indexes of construction category, construction condition, type
of ceiling, and whether there is ongoing construction work on the property.

After estimating Equation D.1, we build the price Pjt of the GHU in neighborhood j

at time t as:

Pjt = γ̂jt + B̂ ∗ f(X̄ijt) (D.2)

where X̄ijt is the vector with the average values of the covariates for the whole sam-
ple, and γ̂jt and B̂ are the estimated parameters from Equation D.1.
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