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1 Introduction

Non-experimental studies of policies causing the re-sorting of agents between treatment

and control groups may suffer from violations of the crucial stable unit treatment value

assumption (SUTVA) (Donaldson, 2015). These policies are usually not randomized and

researchers rely on non-experimental methods - such as difference-in-differences (DiD) -

to study their effects (Kline & Moretti, 2014b; Baum-Snow & Ferreira, 2015). Identifying

the causal effects of these policies using such methodologies requires (among other as-

sumptions) the non-violation of the SUTVA. While most of the recent developments in

DiD methodology have focused on the parallel trends assumption as well as staggered

treatment, less attention has been paid to SUTVA violations (Roth et al., 2023).

In this paper, we discuss the difference-in-differences (DiD) estimator under SUTVA

violations caused by the resorting of agents between control and treatment units. We de-

compose the DiD estimator, derive a general formula to assess the degree of bias caused

by those violations, and quantify this bias by estimating a structural model in the con-

text of a place-based policy in Uruguay. Place-based policies are prominent examples of

interventions that create re-sorting of agents. Overall, we aim to offer a bridge between

reduced-form and structural approaches under SUTVA violations, and propose guide-

lines for applied researchers on how to proceed under the potential presence of SUTVA

violations.

We show that in the presence of re-sorting the DiD estimator can be decomposed

into three effects. First, an “autarky effect” captures what would happen to the treated

area if it was isolated and therefore no relocation effects existed. Second, a “re-sorting

effect” captures the effect on the treated area caused by the inflow of agents into this

area. Third, a “control area contamination effect” captures the effect on the control areas

caused by the outflow of agents from these areas. This control area contamination term

is what prevents the DiD estimator from accurately measuring the average treatment

effect on the treated (ATT).

By linearizing a model of the housing supply and demand in a city, we provide an

analytical formula that approximates the DiD estimate of the introduction of a subsidy
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in the city. First, the formula shows that the DiD estimator is asymptotically biased. Sec-

ond, the formula allows the researcher to know the sign of the bias under mild economic

assumptions. Finally, the formula highlights that the relative size of each of the three ef-

fects contained in the difference-in-differences estimator depends on the demand-side

substitution patterns between neighborhoods as well as the supply elasticities of the

neighborhoods.

Our formula can also help researchers prior to as well as after conducting an empirical

study, as supply and demand partial derivatives are “sufficient statistics” for the relative

size of re-sorting and contamination (Saez, 2001; Chetty, 2009). Before conducting the

study, if the researcher has an estimate of these demand and supply partials, the formula

allows one to compute an approximation of the relative size of the contamination effect

(i.e. the bias of the estimator). After conducting the empirical study and obtaining a

DiD estimate, the researcher can use those supply and demand partials to recover the

actual magnitudes of all three effects.

We further generalize our formula to (the often typical) case in which more than one

area is treated at the same time. This generalized formula includes indirect re-sorting

and contamination effects that the other subsidized areas create on the original areas of

reference for the respective study. We show that, in the often typical case of more than

one subsidized area, the DiD estimate suffers to a larger extent from the contamination

effect.

Additionally, even if the researcher does not have estimates of demand and supply

partials, the formula derived in this paper can offer some guidelines for applied work.

More similar areas are likely to be closer demand-side substitutes and therefore be sub-

ject to the highest contamination effects. This contradicts the intuition behind choosing

very similar units to define treatment and control groups in difference-in-differences de-

signs, such as comparing areas across policy borders or employing matching techniques

(Neumark & Kolko, 2010; Chen et al., 2022). By using simulations of a supply and de-

mand model, we show that there is a trade-off between the parallel trends assumption

and the SUTVA. When the areas are very similar in characteristics, the parallel trends

assumption is satisfied but the contamination effect is larger.
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The decomposition formula also allows us to analyze the assumptions made in the

implementation of the difference-in-differences approach in the previous literature on

place-based policies. First, when the relocation of agents is very local, it can be rea-

sonable to assume that distant areas are not affected by re-sorting. In these cases, the

identification of the effects of the policy can be achieved by comparing the treated area

with distant ones (Delgado & Florax, 2015; Clarke, 2017; Butts, 2021). A prominent

example of this approach is Kline and Moretti (2014a), who exclude neighboring coun-

ties from their control group in their evaluation of the impact of the Tennessee Valley

Authority (TVA).

Second, in many economic settings, the re-sorting of agents from untreated into treated

areas implies that truly untreated areas may not exist or may be hard to credibly detect.

In those contexts, researchers may still recover the impact of the policy under the as-

sumption that all areas are small enough such that the mobility of agents does not affect

prices and quantities in untreated areas. Busso et al. (2013)’s study of Empowerment

Zones constitutes an example of this second type of situation in which difference-in-

differences estimates can recover the effect of the policy.

We apply these insights to the study of a place-based policy that provides substan-

tial tax breaks for housing development in lagging areas of Montevideo, the capital of

Uruguay. We start the analysis by using administrative data on the universe of housing

transactions in Montevideo before and after the policy to estimate a series of difference-

in-differences regressions with housing prices as our dependent variable. These esti-

mates are consistent with our conceptual framework. When using all housing transac-

tions in the city, we find a large negative effect of the policy of around 18% of the av-

erage transaction price. However, when we follow the common practice of only using

observations close to the border, where control and treated areas are more similar and

re-sorting is likely to be more pronounced, estimates are very small negatives or zeros.

This is consistent with contamination caused by re-sorting having an attenuating role:

prices fall on the unsubsidized side of the border as agents re-sort into the subsidized

side. Also consistent with contamination effects is the fact that the absolute magnitude

of these border estimates increases with a measure of heterogeneity characterizing both
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sides of the border and also when we use control units located further away from the

border.

We quantify the potential effect of contamination by using our transaction data to es-

timate a structural model of the supply and demand of housing across Montevideo’s

neighborhoods. We model the demand for housing as a discrete choice problem of

choosing a neighborhood within a city (Bayer et al., 2007; Bayer et al., 2016; Almagro

& Domınguez-Iino, 2019; Anagol et al., 2021).1 Within this framework, we estimate the

price elasticity of housing demand using a nested logit demand model. We use the

introduction of the tax break to build a set of supply-shifting instruments to identify

this demand model. The housing supply in the model is characterized by each neigh-

borhood having a separate log-linear supply function (Saiz, 2010; Baum-Snow & Han,

2023). We calibrate a common inverse supply elasticity for all neighborhoods by match-

ing the reduced-form difference-in-differences estimate with its structural equivalent.

As is common in the quantitative spatial literature, we derive the main insights of this

structural exercise by solving for a set of counterfactual equilibria of the model (Ahlfeldt

et al., 2015; Donaldson, 2017; Monte et al., 2018; Caliendo et al., 2019; Fajgelbaum et al.,

2019).

We show that our model fits the data well in terms of reproducing the parallel trends

that we observe. Moreover, by solving for a series of counterfactual equilibria, we are

able to compute the three additive effects shown in our decomposition formula for the

difference-in-differences estimator. We find that the “re-sorting effect” accounts for 40%

of the “autarky effect” and that the “contamination effect” represents 25% of the ATT.

The existence of substantial contamination implies that the reduced-form difference-in-

differences approach underestimates the share of the subsidy that reaches consumers

(i.e. the incidence of the policy) by 20 percentage points. This underestimation caused

by contamination amounts to approximately 24% of Uruguay’s GDP per capita in the

year the policy was introduced. With this exercise, we show that our methodological

argument is quantitatively relevant in terms of policy implications.

1The application of discrete choice techniques to spatial settings was pioneered by Bayer et al. (2007)
and has been applied to a variety of contexts, both within cities (Bayer et al., 2016; Almagro & Domınguez-
Iino, 2019; Anagol et al., 2021) and across cities (Diamond, 2016; Alves, 2021).
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Finally, we use the equilibrium counterfactuals to revisit the relationship we find in

the reduced-form analysis between our measure of heterogeneity across control and

treated units, and the size of the difference-in-differences estimate. Consistent with our

decomposition formula, we confirm that contamination is negatively correlated with

our measure of heterogeneity between units and positively correlated with the diver-

sion ratios between these units. Importantly, this implies that the lower absolute values

of the reduced-form DiD estimates obtained by comparing homogeneous units are ef-

fectively driven by contamination (i.e. a larger bias) and not just regular treatment het-

erogeneity. This calls for caution with the approach of maximizing the comparability

between treatment and control groups.

Our paper contributes to three main strands of literature. First, we contribute to the

literature on causal inference in spatial settings. In their comprehensive review of this

literature, Baum-Snow and Ferreira (2015) include difference-in-differences as one of

the main techniques for obtaining causal estimates. The authors highlight how the re-

sorting of individuals between treatment and control areas constitutes a serious threat

to identification in difference-in-differences designs in those settings. This threat can

be seen as a special case of dealing with spatial spillovers in difference-in-differences

settings, a topic that has received attention from several previous works (Clarke, 2017;

James & Smith, 2020; Banzhaf, 2021; Butts, 2021; Huber & Steinmayr, 2021; Myers &

Lanahan, 2022; Ding et al., 2023; Hollingsworth et al., 2024).

Currently, successful identification of the effects of place-based policies with difference-

in-differences designs in the presence of spillovers is restricted to two contexts. First,

spatial spillovers can be handled by defining enough large treatment and control units

so that spillovers are contained within those units (Feyrer et al., 2017; Huber & Stein-

mayr, 2021). Second, researchers can employ successive “donuts” or “rings” around the

treatment area to flexibly capture the effect of spillovers (James & Smith, 2020; Butts,

2021; Myers & Lanahan, 2022). As spillovers eventually fade away far enough from the

treatment, comparing treated areas with spillover-free areas yields an average treatment

effect on treated areas (Clarke, 2017). However, when policies are large enough, those

spillover-free areas may not exist or may be difficult to credibly identify. Also, natural
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(sea, mountains) or man-made (parks, highways) barriers may restrict the construction

of far enough rings. We provide a methodological framework for empirically studying

the effects of place-based policies in such contexts.2

Second, we contribute to the literature on the evaluation of place-based policies tar-

geting lagging areas. As highlighted by Kline and Moretti (2014b), evaluating the suc-

cess of these programs requires going beyond their impact on specific variables and

adopting a consistent equilibrium framework. One key lesson from spatial equilibrium

models is that the efficiency impact of place-based policies depends on the degree by

which the policy induces economic agents to relocate from untreated into treated areas

(Moretti, 2011; Busso et al., 2013; Serrato & Zidar, 2016). We show that heterogeneous

re-sorting can generate wrong conclusions about the efficiency of place-based policies

when estimates are obtained by comparing only certain areas.

Third, we contribute to the burgeoning literature on the methodological improvement

of difference-in-differences estimates (de Chaisemartin & D’Haultfœuille, 2023; Roth et

al., 2023). Recently, there has been substantial progress in designs with multiple periods

and variation in treatment timing (Callaway & Sant’Anna, 2021; Goodman-Bacon, 2021;

Sun & Abraham, 2021), potential violations in parallel trends (Rambachan & Roth, 2023;

Roth & Sant’Anna, 2023), and improved inference (Ferman & Pinto, 2019). In their re-

view of the state of the literature, Roth et al. (2023) include spillovers as one of the main

areas for future research in this literature, with a special mention to spatial spillovers.

We analyze a specific type of spatial spillover that we believe has high economic rele-

vance. These are the ones generated by the movement of economic agents across space

in response to place-based policies. We stress the limitations of difference-in-differences

designs in terms of recovering structural parameters of interest in equilibrium contexts

and provide tools to address those limitations.

2Other papers deal with SUTVA violations by deriving difference-in-differences equations using spa-
tial quantitative models (Rudik et al., 2022; Hollingsworth et al., 2024). In this way, the source of the
spillover is explicitly modeled and included in the estimating equation, thus yielding consistent esti-
mates.
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2 Difference-in-Differences in Equilibrium

2.1 SUTVA and Difference-in-Differences

The stable unit treatment value assumption (SUTVA) requires that the outcome of each

unit does not depend on the treatment status of other units (Imbens & Rubin, 2015).

This assumption allows one to write the potential outcome of every unit as effectively

depending only on its assigned treatment status. In a canonical DiD framework with

two periods (t ∈ {pre, post}) and discrete treatment (D ∈ {0, 1}), there are two types of

units j. Namely, one never receiving treatment and the other receiving treatment only

in the post-period. In this framework, the first type of units has a potential outcome

Yj,t(0) and the second type has Yj,t(1) (Roth et al., 2023). The causal estimand of interest

is the average treatment effect on the treated (ATT) in the second period:

ATT = β = E[Yj,post(1)− Yj,post(0)|Dj = 1] (1)

The challenge to compute the object of interest β is that Yj,post(0) is not observed when

Dj = 1. Under the assumptions of parallel trends and no anticipation, the difference-

in-differences estimator surmounts this challenge by building a counterfactual Yj,post(0)

when Dj = 1 is not observed. This counterfactual is obtained by adding the average

change in the outcomes of the untreated units between both periods to the baseline

average for treated units:

β̂DiD = (Ȳt=post,D=1 − Ȳt=pre,D=1)− (Ȳt=post,D=0 − Ȳt=pre,D=0) (2)

where Ȳt,d is sample mean in period t. When the SUTVA is violated, for example, due

to the re-sorting of agents between treatment and control, the DiD estimator fails to

estimate the ATT, which is the object of interest. We discuss this case in the following

subsection.
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2.2 SUTVA Violations in a City-Wide Market Equilibrium

SUTVA violations can arise for several reasons, including network effects or market

equilibria (Manski, 1993). We apply our discussion of DiD and SUTVA violations to

the introduction of a supply-side subsidy in the housing market of a city. Without loss

of generality and under homogeneous effects, we assume there are only two neighbor-

hoods as well as a generic area outside the city. One neighborhood receives the subsidy,

and the other does not. We refer to the subsidized area as neighborhood A, with a

housing price pAt , and the unsubsidized one as neighborhood B, with housing price pBt .

Taking housing prices as the outcome variable of a difference-in-differences exercise,

Equation 2 can be written as:

β̂DiD = (pApost − pApre)− (pBpost − pBpre) (3)

We now discuss the DiD formula in Equation 3 through the lens of a supply and de-

mand model for homogeneous housing units across neighborhoods within a city. In

the model, the demand side consists of households who decide if they want to buy

a housing unit in one of the two neighborhoods within the city or remain outside the

city. There are two main determinants of households’ discrete choice between neighbor-

hoods: housing prices and amenities. These are denoted by the vectors pt and At, re-

spectively. The demand function for housing in each neighborhood j is Dj(pt,At).

The supply side is given by property-owners who choose if they want to sell their

housing unit (new construction or existing unit) located in a given neighborhood. Higher

prices induce a higher supply of housing units available for sale. This relationship be-

tween prices and quantities offered is represented by an upward-sloping supply func-

tion, Sj(qjt ), with qjt denoting the quantity offered in neighborhood j at time t. Note that

we assume that both households and property-owners make static decisions in each pe-

riod. This means that their actions in this period are independent of both previous and

future periods.

We first examine the DiD estimator in the case of no re-sorting between neighbor-

hoods A and B. We then examine the more general case with re-sorting. After pre-
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senting these two cases, we introduce a generalized decomposition for two neighbor-

hoods, which we then extend to many neighborhoods. Throughout the section, we fo-

cus on demand-side re-sorting of households, and thus abstract away from supply-side

re-sorting.3

Figure 1: DiD with No Re-Sorting between Neighborhoods A and B

Quantity

Price

Quantity

Price

Figure 1 presents the autarky situation in which consumers do not reallocate between

A and B but may relocate between their respective neighborhood and the outside op-

tion. Implementing a supply-side subsidy in the neighborhood A would first result in an

outward shift of the supply in this neighborhood. Due to lower prices, more households

choose to live in A instead of outside the city, which explains the observed movement

along the demand curve in A. Neither demand nor supply is affected in neighborhood

B and thus prices there do not change. The estimated DiD in this scenario is equal to

the difference in prices between periods 2 and 1 in the neighborhood A:

β̂AUT
DiD = (pA2 − pA1 )− (pB2 − pB1 ) = pA2 − pA1

Note that in this situation of autarky the DiD estimator correctly captures the effect of

the subsidy on the targeted areas. Next we show that this is not the case when agents re-

sort between the two neighborhoods, as this violates the SUTVA stated at the beginning

of this section.

Figure 2 highlights a situation in which consumers may relocate between the two

neighborhoods. When the supply-side subsidy is enacted in neighborhood A, housing

3Supply-side re-sorting in reaction to a demand-side place-based policy could be analogously accom-
modated in the framework. As discussed in Section 3, supply-side re-sorting is not relevant in our em-
pirical setting.
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Figure 2: DiD with Re-Sorting between Neighborhoods A and B

Quantity

Price

Quantity

Price

prices drop from pA1 to pA2 . However, due to the assumed pattern of substitution, there

is a new “round” of effects which we index as taking place at t = 3. Now, the demand

curve for housing rotates counterclockwise in neighborhood A, and shifts to the lower

left in neighborhood B.4 Both movements are due to re-sorting. Prices in neighbor-

hood A increase from pA2 to pA3 while prices in neighborhood B drop from pB1 = pB2 to

pB3 . Estimating the effect of the same policy using the DiD approach now yields the

following:

β̂DiD = (pA3 − pA1 )− (pB3 − pB1 )

= (pA3 − pA2 + pA2 − pA1 )− (pB3 − pB2 + pB2 − pB1 )

= (pA2 − pA1 ) + (pA3 − pA2 )− (pB3 − pB2 )

With demand re-sorting between the two neighborhoods, the estimated DiD effect

contains not only the autarky effect from before, but also the price increase in A due to

higher demand, as well as the price decrease in B due to the lower demand. As indi-

cated in Equation 4, we refer to the additional effect in neighborhood A as “re-sorting”,

and to the effect in B as “contamination”. While in our context both re-sorting and

contamination attenuate the autarky effect of the policy, the former is part of the “legiti-

mate” effect of the policy on the targeted neighborhood while the latter “contaminates”

the DiD estimate.
4The new demand curve in A passes through the original (q1A, p

1
A) pair, reflecting that the amount of

housing demanded would be the same at the original price, but yields higher demanded quantities for
prices below p1A, capturing the re-sorting of agents away from B and into A in reaction to those lower
prices.
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β̂DiD = (pA2 − pA1 )︸ ︷︷ ︸
Autarky

+(pA3 − pA2 )︸ ︷︷ ︸
Re-Sorting︸ ︷︷ ︸

Treatment Effect on Subsidized Area

− (pB3 − pB2 )︸ ︷︷ ︸
Contamination

(4)

In this market equilibrium setting, the estimate of a DiD no longer recovers the ATT

of the policy, which is given by the sum of the first two terms of Equation 4. As dis-

cussed by Sobel (2006), the DiD estimator does not recover any effect of interest but the

difference between two effects. We next introduce an approximation formula for the

DiD estimator that helps to understand the determinants of the relative sizes of both re-

sorting and contamination. The relative size of contamination in that formula defines

the relative size of the asymptotic bias of the DiD estimate.

2.3 DiD Decomposition with Supply and Demand Elasticities

We linearize the simple supply and demand model from above to express Equation 4 in

terms of supply and demand elasticities. We start with the case of two neighborhoods

and one outside option, and then we generalize to the existence of multiple subsidized

neighborhoods. Figure A1 in Appendix A presents a graphical representation of these

two situations.

The case of one subsidized neighborhood. Define the inverse housing supply function

as P j
S(q

j), and the diversion ratio DRA,B as the quotient between the change in demand

for B and the change in the demand for A when the price of A changes.5 As we show in

Appendix B, the DiD estimator is approximately equal to:

β̂DiD ≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky in A

×

[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Re-Sorting Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Contamination Scaling

]
(5)

Equation 5 highlights that the DiD estimate in a situation with re-sorting between

subsidized and unsubsidized neighborhoods is actually a scaled version of the policy’s

effect in autarky. Intuitively, the individual scaling factors depend crucially on the re-

sponsiveness of demand and supply in the two neighborhoods. They increase with

the demand’s sensitivity to prices and with the supply-side responsiveness of prices to

5The analytical definition of that diversion ratio thus is DRA,B = ∂DB/∂pA

∂DA/∂pA .
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quantities.

The second term inside the square brackets is the scaling factor due to re-sorting. It

captures the effect of people relocating into this area as a result of the subsidy. The

last term inside the main bracket of Equation 5 deserves special attention as it is the

one causing the DiD estimator to be biased and unable to recover the true effect of the

policy on subsidized areas. Note that this term increases linearly with respect to each of

its three terms: the partial of the demand in the subsidized neighborhood with respect to

its own price, the partial of the inverse supply in the unsubsidized neighborhood with

respect to its own quantity, and the diversion ratio between the two neighborhoods.

Intuitively, the bias of the DiD estimator is higher when households’ moving decisions

between subsidized and unsubsidized neighborhoods are very sensitive with respect to

prices and the supply curve in unsubsidized neighborhoods is more inelastic.

The case of multiple subsidized neighborhoods. The formula in Equation 5 applies to

two areas and can be generalized to having more than one subsidized neighborhood.6

The general formula still computes the DiD term between areas A as and B but allowing

for re-sorting from all other areas in the city into A and B. The right panel of Figure A1

in Appendix A presents a graphical representation of this situation. In this general case,

the DiD estimator can be approximately computed with the following formula derived

in Appendix B:

β̂DiD ≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky in A

×

[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Direct Re-Sorting Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Direct Contamination Scaling

]

+
∑
k∈K

(pk2 − pk1)︸ ︷︷ ︸
Autarky in k

×

[
∂Dk

∂pk
× ∂PA

S

∂qA
×DRk,A︸ ︷︷ ︸

Indirect Re-Sorting Scaling

− ∂Dk

∂pk
× ∂PB

S

∂qB
×DRk,B︸ ︷︷ ︸

Indirect Contamination Scaling

] (6)

with K denoting the set of all subsidized neighborhoods excluding A.

The formula has similar terms to before, but it also has some differences. The first

line of Equation 6 is the same as in Equation 5 including the autarky, re-sorting and

6Note that the case with one subsidized area and multiple unsubsidized areas is reflected in Equa-
tion 5.
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contamination terms created by the introduction of the subsidy in the neighborhood A.

The second line of Equation 6 includes two terms that capture the effects of the subsidy

in all the other subsidized areas different from A. First, the indirect re-sorting, i.e. people

reallocating away from neighborhood A into other subsidized neighborhoods. Note

that since the price in the other areas decreases, this indirect re-sorting moderates the

price increase in A generated by direct re-sorting. Second, the indirect contamination

effect. This effect captures the effect of the introduction of the subsidy in areas other

than A on the price of neighborhood B. Therefore, the full contamination effect now

is unequivocally larger than before. Overall, in the most typical case of more than one

neighborhood being subsidized, the DiD estimator is even less accurate, suffering to a

larger extent from the contamination effect.

2.4 Guidelines for Empirical Work

In this subsection we discuss the main guidelines that the formulas presented above

provide to researchers in contexts of SUTVA violations due to re-sorting and contam-

ination. First, Equations 4 to 6 show that contamination biases the DiD estimate in

situations where the re-sorting of agents changes the outcome variable in non-targeted

areas. Furthermore, these equations indicate the sign of the bias. For example, if the

policy reduces prices in the subsidized areas but also causes lower prices in the un-

subsidized areas due to contamination, then the DiD estimate (βDiD) would be biased

towards zero. Alternatively, the DiD estimate of a different type of subsidy that in-

creases jobs in one area, by displacing jobs from another area, would be upward biased.

The existence of this bias should serve as a caution for applied researchers employing

DiD estimates in contexts where re-sorting could alter the outcome variable of interest

in the unsubsidized area.

Second, our formulas highlight the determinants of the bias, and the extent to which

each determinant influences contamination. On one hand, contamination increases with

the inverse elasticity of the housing supply of the unsubsidized area. This deserves

special attention given the available evidence on neighborhood-level housing supplies

being rather inelastic (Baum-Snow & Han, 2023). On the other hand, contamination
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increases with the diversion ratio between the two areas. These two determinants of

contamination can guide the applied researcher in choosing which area constitutes a

better “control” in contexts of re-sorting.

Third, in the contexts where there is only one subsidized and one unsubsidized area

(captured by Equation 5), the elasticities of supply and demand constitute “sufficient

statistics” for the relative size of each effect (Saez, 2001; Chetty, 2009). That is, ex-ante

(before doing the study), if the researcher is able to find applicable estimates of supply

and demand elasticities in the literature, she would be able to compute the relative size

of the effects. In other words, the researcher would be able to understand the relative

importance of contamination even before starting the study. Additionally, ex-post (after

doing the study), the formula in Equation 5 allows researchers to combine their DiD

estimate with the aforementioned estimates of supply and demand elasticities to calcu-

late all the three terms in Equation 4. Critically, this allows one to recover the treatment

effect on the treated of the policy without estimating a full structural model.

Fourth, Equation 6 shows that if there is more than one subsidized area, the effect on

the subsidized area of interest cannot be computed anymore knowing only the supply

and demand elasticities. In this sense, the elasticities are not “sufficient statistics” any-

more for the relative size of the three effects. To compute these effects, the researcher

would need to know the effect of the policy in autarky in all the subsidized neighbor-

hoods.

Additionally, the guidelines mentioned above assume that the researcher has access

to relevant supply and demand estimates. In case these estimates are not available,

the formulas still give some guidelines for choosing better comparison groups. On the

supply side, researchers should avoid choosing “ control areas” with characteristics that

make the housing supply more inelastic. For instance, for the United States Baum-Snow

and Han (2023) show that housing supply is more elastic in places with more unde-

veloped land, flatter, and less regulated. On the demand side, the formula indicates

that the problem relies on how close substitutes “control” and “treatment” areas are.

Thus, researchers should look for control areas that consumers see as poor substitutes

for the targeted areas. Without actual demand estimates for cross-price substitutability,
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researches might still be able to find relevant proxies. For instance, data on relocation

flows between the areas might help, as consumers are more likely to regularly move

between areas that are closer substitutes. Additionally, consumers are more likely to

substitute between products that are more similar in observable characteristics. As we

discuss in more detail in Subsection 5.3, the recommendation of selecting control areas

that are less similar in observables compared to treatment areas may entail a trade-off

with satisfying the parallel trends assumption.

Finally, our formula also can help to review the assumptions that allowed the pre-

vious literature to identify the effect of place-based policies in contexts of re-sorting.

One strand of literature assumes that there is a sufficiently far away area such that it is

unaffected by the policy and can thus be used as a “contamination-free control” in the

difference-in-differences estimation strategy. This strategy is often referred as the “ring

approach” and Kline and Moretti (2014a), Clarke (2017), and Butts (2022) are examples

of relevant papers implementing this approach. Note that the formula in Equation 5

shows that this is equivalent to assuming that the diversion ratio between the area of

interest (A) and the control area (B) is zero (DRA,B = 0). This assumption implies that

the contamination effect is zero and thus the DiD estimator does indeed recover the true

effect of the policy on targeted areas. One limitation of this strategy is that, when poli-

cies are “large”, all areas could in principle be affected and it may be difficult to find an

area for which DRA,B = 0. The formula shows that when researchers have demand esti-

mates for different neighborhoods, they can directly test this hypothesis of the existence

of an unaffected area.

A second strand of the literature can be seen as assuming that there is a large enough

number of areas such that each of them is too small to affect the rest through re-sorting.

Examples of this strategy are Busso et al. (2013) and Chen et al. (2022). The formula

in Equation 5 shows that this is equivalent to assuming that ∂DA

∂pA
= 0, implying that in

these contexts the DiD estimate captures only the autarky effect.

16



3 Institutional Context and Data

3.1 Institutional Context

The policy we analyze is a typical tax break for residential investment in lagging urban

areas, similar to the Opportunity Zones (OZ) program in the US. In contrast to the OZ

tax breaks, which might be directed to commercial or residential development, the tax

breaks we analyze were only directed at residential development. We refer to the policy

by its familiar acronym in Spanish of “LVIS” (Ley de Vivienda de Interés Social). Although

the name of the policy refers to the promotion of social housing, homes that benefited

from the program did not have to be occupied by low-income households and could be

freely sold at market prices.

Tax breaks in LVIS are quite large, especially when compared to the US’s Opportunity

Zones. González-Pampillón (2022) estimates that the LVIS tax benefits were equal to

20% of the cost of the projects. The main quantitative component of the tax benefits was

the complete exemption from the 22% value-added tax on inputs. Beyond this main

component, LVIS projects were fully exempted from the country’s corporate tax of 25%,

and units devoted to the rental market were partially exempted from both income and

wealth taxes. Because these tax breaks were so large, we expect a negative effect of the

policy on the price of housing in subsidized areas.

The law that created LVIS was approved by the Uruguayan parliament in August

2011. Its implementation details, including the designation of the subsidized zones,

were only defined in October of that year. Therefore, we take October 2011 as the start-

ing date of the policy. The policy was substantially modified in June 2014, adding price

ceilings and other restrictions that made it less attractive to investors. Because these

modifications would substantially change the impact of the policy on housing prices,

we end our analysis period in May 2014.

We study the impact of LVIS tax breaks in the department of Montevideo, which

holds the homonymous 1.3 million capital city of Uruguay and concentrated 70% of

LVIS projects during our period (Berrutti, 2017). LVIS in Montevideo subsidized res-

idential development in low- and middle-income neighborhoods. The upper half of
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Figure 3 presents a map of subsidized and unsubsidized areas in the urban territory of

the Montevideo department. The area without subsidies is located along the southeast

coast of the city, by the Rio de la Plata river, and concentrates most of the middle and

high-income neighborhoods. The subsidized area covers almost three quarters of urban

Montevideo, including the central and older areas of the city as well as working-class

neighborhoods.

The borders of the policy were defined jointly by the Ministry of Housing, the Min-

istry of Economics and Finance, and the Local Government of Montevideo with the ex-

plicit intention of excluding high-income neighborhoods from the subsidies (González-

Pampillón, 2022; Borraz et al., 2024). Around half of the border coincides with one of

the main avenues of the city, which is historically the most important spatial division

between high- and low-income neighborhoods in the city. The other half of the border

is drawn across minor streets within homogeneous neighborhoods. In the paper, we

exploit this contrast between low and high heterogeneity across different parts of the

border to obtain DiD estimates corresponding to more or less intense resorting across

the border.

Due to the generosity of its tax breaks, the policy had huge impacts on the location of

residential investment in Montevideo. Berrutti (2017) shows that the share of the sub-

sidized area in terms of square meters of construction permits went from around 20%

before the policy to more than 60% in the first three years of the policy. Another mea-

sure of the huge quantitative relevance of the policy is the total amount of investments

benefited by LVIS tax cuts. González-Pampillón (2022) estimates that the total invest-

ment approved during the first five years of the law amounts to 1.5% of the country’s

GDP.

The mechanics of the law implied that developers had to apply for tax benefits and

obtain approval for their projects before beginning the construction phase. As a result

of this application process plus the usual construction phase, the first few LVIS projects

only reached completion in 2013, the first sales of LVIS properties occurred in 2014, and

most of the sales were made in the following years (González-Pampillón, 2022). This

timing implies that almost no LVIS projects and very few LVIS sales were completed
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during the period we study. Thus, our hypothesis on the negative effect of the policy

on prices fully operates through the capitalization of future lower construction costs

into current housing prices. Although there were almost no finished subsidized units

during our period of analysis, the number of applications as well as the number of ap-

proved projects were large. Since these numbers were publicly available online, during

our period of analysis it was common knowledge that the supply in the targeted neigh-

borhoods was going to expand substantially in the following years.

The public data on developers’ applications to obtain the LVIS tax break further al-

lows us to characterize the new housing supply generated by the policy as being pro-

vided by highly atomistic producers. Of the 1,073 projects presented until October 2022,

the average firm had 0.1% of the projects and 0.1% of the housing units. The maximum

share attained by any single firm was 1.9% and 2.0% of the number of projects and

housing units, respectively. This scenario of atomistic suppliers motivates the perfectly

competitive assumption for the supply side in our model. Furthermore, a highly com-

petitive context constitutes an additional reason why we expect a negative effect of the

policy on the housing prices of subsidized areas.

3.2 Data

We use four sources of data. The most important one is the universe of housing trans-

actions from the National Registry Office in Uruguay for the period 2010-2014. These

data include the exact price and day for each housing sale as well as a measure of the

area transacted. Uruguay is a high-income country according to the World Bank clas-

sification and has the lowest levels of informality in the region. So this database of

registered housing transactions is representative of the highly formal housing market

of Montevideo.

The transaction data further includes a unique property number, which allows us to

match each sale with its corresponding entry in the registry of the National Cadaster of

Uruguay, our second main source of data. This matching gives us the exact location of

the parcel where the property is located and a set of housing characteristics, including

the property area. We use this area from the cadaster when the area in the sales data
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is missing. The cadaster data do not exist for the years we analyze, and thus we use

the earliest dataset available, which corresponds to 2016. We drop the top and bottom

percentile of the area and price distribution of the transaction dataset to avoid extreme

values from affecting our estimates.

The third source of data is a geo-coded map of the areas subsidized by LVIS, similar to

Figure 3. This geospatial data allows us to assign a subsidized or non-subsidized status

to each housing transaction in the city, and to calculate the exact distance of those trans-

actions to the borders of the policy. The fourth and last source of data is the 2010 national

population census. These data provide census tracts’ average years of education, which

we use to define neighborhoods and nests, as we explain in the next subsection.

Table 1 presents the average number of transactions, their price per square meter, and

their area separately for the subsidized and unsubsidized sections of the city and distin-

guishes between before and after the introduction of the policy. The prices per square

meter and the sizes of houses are lower in the subsidized than in the unsubsidized areas.

This is consistent with the policy subsidizing lagging areas in the city. Housing prices

grow over time in all areas due to a context of strong economic growth in Uruguay

during this period.

Table 1: Housing Prices and Area by Subsidy Status in the Pre and Post Periods

Pre Post

Subsidized Unsubsidized Subsidized Unsubsidized

Number of Transactions 10, 035 6, 793 13, 112 8, 861

Mean Square Meter Price (USD/m2) 701 1, 446 955 1, 894
(505) (675) (680) (874)

Mean Transaction Size (m2) 125 96 123 91
(136) (105) (134) (99)

Source: Authors’ calculations using housing transaction data from the National Registry Office in Uruguay.
Notes: Standard deviations are provided in parentheses. Calculations in the “Pre” supra column correspond to the

period between January 2010, when our data starts, until September 2011, the month before the starting date of the
policy. Calculations in the “Post” supra column correspond to the period beginning in October 2011 and ending in
May 2014. The “subsidized” and “unsubsidized” columns indicate the area in which the transaction occurred. Figure 3
presents a map of those two areas.

In various exercises in the paper, we use a set of housing characteristics as controls

in regressions that have the price of housing as the dependent variable. These control

variables are obtained from the cadaster data except for the distance to the coast, which

we computed using the exact location of the transaction. The set of housing character-
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istics from the cadaster includes the age of the property as well as a set of categorical

variables indicating construction category, construction condition, type of ceiling, and

if there is ongoing construction work on the property.

3.3 Neighborhood Definition

Together with the decomposition formula and the reduced-form DiD estimation, the es-

timation and computation of counterfactual equilibria of a specific model of the supply

and demand of housing in Montevideo is an essential part of the paper. Our modeling

of the equilibrium impacts of the tax break on housing prices follows a long tradition of

using discrete choice techniques to study housing markets (Bayer et al., 2007; Diamond,

2016; Anagol et al., 2021; Almagro et al., 2022). These techniques require a partition

of the space of the city into exclusive units. Because Montevideo is not divided into

administrative units that generate meaningful differences in taxation or public services

provision, we partition the city ourselves into contiguous and homogeneous units using

a spatial clustering algorithm. Throughout the paper, we refer to the resulting units as

neighborhoods.

We use the spatial clustering algorithm “SKATER” (Spatial ’K’luster Analysis by Tree

Edge Removal), which was developed by Martins et al. (2006) and has four convenient

features for the problem at hand. First, unlike regular, non-spatial clustering techniques,

this algorithm guarantees spatial contiguity of the resulting units. Second, it allows

for the introduction of a constraint on the minimum number of observations each unit

should have. We need this feature to make sure that each neighborhood has enough

transactions to compute the average price and market shares we use in the estimation

of the demand model. Third, the algorithm operates by maximizing the internal homo-

geneity of the resulting units in terms of a variable defined by the researcher. Finally,

the procedure allows one to set a target number of units. This target has a lower pri-

ority in the functioning algorithm and may not be reached in order to satisfy the other

constraints.

We apply the spatial clustering algorithm separately to the subsidized and unsubsi-

dized sections of the city such that the entire area of each neighborhood falls into only
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one of those two categories. We indicate the algorithm to use the average number of

years of education of the tracts from the 2011 population census to maximize the homo-

geneity of the units. Figure A3 in Appendix A shows there are huge differences in years

of education across Montevideo. This huge variation together with the evidence about

the sorting of households along education makes this variable an ideal candidate for di-

viding the city into different units (Black, 1999; Bayer et al., 2007). We set a minimum of

10 transactions for the average number of monthly sales that each neighborhood should

have and a target of 50 subsidized and 50 unsubsidized neighborhoods.

The spatial clustering algorithm gives us a total of 49 neighborhoods, 30 subsidized

and 19 unsubsidized. We further classify those 49 neighborhoods into six groups, which

are the nests of our nested logit model. For this second classification we use the same

algorithm as in the first one except we do not require spatial contiguity for the resulting

units, thus allowing the algorithm to join subsidized and unsubsidized neighborhoods

in the same nest. The results of this operation are presented in the lower half of Fig-

ure 3. Each of the six colors in that figure represents a different nest, the solid line

represents the border of the policy, and the lighter lines show the borders of the neigh-

borhoods.

Figure 3: Neighborhood Classification by Subsidy Status and Nest
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(b) Neighborhoods by Nest

Source: Authors’ own illustrations using official shapefiles from the Geomatic Service of Uruguay.
Notes: In panels a) and b) the thicker line shows the border of the policy and the thinner lines show the
neighborhood limits. We defined neighborhoods using a spatial clustering algorithm, as explained in
Subsection 3.3. In panel a), the classification of neighborhoods into subsidized or unsubsidized follows
the borders of the policy as defined in official government documents. The classification of neighbor-
hoods by color in panel b) is done with the second application of the spatial algorithm explained in
Subsection 3.3. This classification defines the nests we use in the nested logit demand model.
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4 Difference-in-Differences Results

This section presents three sets of DiD estimates of the effect of the policy. Consistent

with our hypothesis on the subsidy having a negative effect on the prices in targeted ar-

eas, the estimates in the three sets are consistently negative. However, their magnitude

varies greatly depending on which neighborhoods are included in the subsidized and

unsubsidized groups. While some estimates imply large price reductions suggesting a

highly beneficial impact of the tax break on consumers, others do not reject a zero im-

pact, which would be consistent with landlords fully appropriating the subsidy. These

results can be generated only by heterogeneity of the treatment effects. However, we

show that our results are consistent with contamination being behind part of that vari-

ation. Following the framework described in Section 2, the presence of contamination

introduces the possibility of bias in the DiD estimates.

4.1 Benchmark Difference-in-Differences

The general specification for our difference-in-differences regressions is the canonical

one and it is given by the following equation:

pijt = γj + αt + βSubsidyj × Postt + f(Xijt) + ϵijt (7)

with pijt denoting the price per square meter of housing transaction i in neighborhood

j at month t. Because each neighborhood is completely subsidized or unsubsidized, the

neighborhood fixed-effect γj subsumes the usual Subsidyj term. f(Xijt) is a third-order

polynomial on a set of housing characteristics.

Columns 1 to 3 of Table 2 present our first set of DiD estimates. The defining feature

of this first set is that it considers all transactions in the city and implements the canon-

ical DiD specification presented in Equation 7. Column 1 only has the three traditional

DiD terms, namely those that indicate the subsidy group, the subsidy timing, and the

interaction of these two. The second column adds the third-order polynomial on the

housing characteristics described in Subsection 3.2. These include the built area, the

distance to the coast, the construction year, and four variables that measure the qual-
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Table 2: Difference-in-Differences Regressions

Dependent Variable:

USD per Square Meter

(1) (2) (3) (4) (5) (6)

Subsidized × Post-Policy −194∗∗∗ −178∗∗∗ −181∗∗∗ −1 −58∗ −61
(31) (26) (27) (52) (32) (38)

Housing Characteristics - ✓ ✓ - ✓ ✓
Fixed Effect - Geography Subsidized Subsidized Neighborhood Subsidized Subsidized Neighborhood
Fixed Effect - Time Post-Policy Post-Policy Year × Month Post-Policy Post-Policy Year × Month
No. Obs 38,801 38,801 38,801 7,579 7,579 7,579
Data City-Wide City-Wide City-Wide 500m Buffer 500m Buffer 500m Buffer
Pre-Policy Price per Square Meter 1,002 1,002 1,002 1,112 1,112 1,112

Source: Authors’ calculations using housing transaction data from the National Registry Office in Uruguay and matched data on property characteristics
from the country’s national cadaster.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the neighborhood level and provided in parentheses. The “Housing Character-

istics” controls consist of a polynomial of degree three on transaction area in square meters, building age in years, distance to the coast in meters, and
indexes of construction category, construction condition, type of ceiling, and if there is ongoing construction work on the property. The “Subsidized”
and “Neighborhood” geography fixed effects indicate the location of the transaction in terms of subsidized or unsubsidized areas and neighborhood,
respectively. These two geographical classifications are shown in Figure 3. The 500 meter buffer restriction requires the transaction is located less than
500 meter away from the border of the policy. This 500 meter buffer is shown in Figure A2 in Appendix A.

ity of construction. The last column adds month-year and neighborhood fixed effects.

These DiD estimates presented in Table 2 are complemented with the usual graphical

evidence in Figure A4 and Figure A7 in the Appendix.

The first three columns in Table 2 show consistently negative estimates with a stable

magnitude across the different specifications. This result is further confirmed graphi-

cally in Figure A4 and Figure A6 in Appendix A, which also show parallel pretrends

between subsidized and unsubsidized areas. Our preferred estimate of -181 USD per

square meter, in Column 3, is quite large, representing 18% of the average price per

square meter before the policy.

4.2 Other difference-in-Differences estimates

A second set of estimates is obtained by implementing commonly used techniques

aimed at increasing the comparability between subsidized and unsubsidized areas to

mitigate concerns regarding unobserved confounders (Baum-Snow & Ferreira, 2015;

Chen et al., 2022). For instance, in their evaluation of the employment impacts of En-

terprise Zones in the US, Neumark and Kolko (2010) state that “the ideal control group

consists of areas economically similar to enterprise zones but lacking enterprise zone

designation”. However, as suggested by our analysis in Section 2, agents may re-sort

more easily across similar areas, leading to larger contamination effects and more bi-

ased estimates. In our context, those agents would leave unsubsidized areas, depress-

24



ing housing prices there, and causing the resulting DiD estimate to be biased towards

zero. In fact, all the estimates in this subsection are significantly smaller in absolute

value in comparison to the ones in the previous section. This pattern aligns with the

notion that techniques emphasizing comparability may introduce greater bias due to

contamination.

The first and most common technique to maximize comparability between “treated”

and “control” areas is to restrict the estimating sample to units located right across the

border of the policy (Neumark & Kolko, 2010; Chen et al., 2022). The estimates in

Columns 4 to 6 of Table 2 follow this approach and compare the evolution of prices be-

tween subsidized and unsubsidized areas within a 500-meter buffer around the border.

Figure A2 in the appendix provides a map of this buffer, and Figure A5 and Figure A7

present the usual DiD graphs. The pre-policy price levels on both sides of the border

in Figure A5 indicate that both areas are indeed very similar. Our preferred point es-

timate, in Column 6, is -61 USD per square meter with a standard error of 38. Thus, a

researcher conducting a border-DiD design in this context would not be able to reject the

hypothesis that the tax break had a null effect on the prices faced by consumers.

Table 3: Difference-in-Differences Regressions - Extensions

Dependent Variable:

USD per Square Meter

(1) (2) (3) (4) (5) (6)

Subsidized × Post-Policy −90∗∗∗ −112 −79∗ −84∗ −113∗ −121∗∗∗

(32) (75) (45) (45) (57) (36)

Housing Characteristics ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effect - Geography Neighborhood Neighborhood Neighborhood Neighborhood Neighborhood Neighborhood
Fixed Effect - Time Year × Month Year × Month Year × Month Year × Month Year × Month Year × Month
No. Obs 38,801 4,384 7,579 6,982 6,619 7,442
Data:

Subsidized Area All 0-500m 0-500m 0-500m 0-500m 0-500m
Unsubsidized Area All 0-500m 0-500m 500-1000m 1000-1500m 1500-2000m

Estimation Method DiD with PScore RD RD-DiD Ring-DiD Ring-DiD Ring-DiD

Source: Authors’ calculations using housing transaction data from the National Registry Office in Uruguay and matched data on property characteristics from
the country’s national cadaster.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the neighborhood level and provided in parentheses. The “Housing Characteristics”

controls consist of a polynomial of degree three on transaction area in square meters, building age in years, distance to the coast in meters, and indexes of
construction category, construction condition, type of ceiling, and if there is ongoing construction work on the property. The “Neighborhood” fixed effects
indicate the location of the transaction. These neighborhoods are shown in Figure 3. The difference-in-differences with propensity score (“DiD with PScore”
in the Table) is implemented by re-weighting observations in the unsubsidized areas with weights obtained from a probit model of receiving the subsidy. The
characteristics used in that model coincide with the ones used as controls in all regressions. The RD and the RD-DiD are estimated with a second degree
polynomial on the distance to the border. The RD uses only data for the period after the subsidy was introduced. The “Subsidized” and “Unsubsidized Area”
rows indicate the distance with respect to the border of the policy that the location of each transaction must satisfy in order to be considered in the regression.
For instance, Columns (2) and (3) consider transactions located in the 500 meter buffer around the border, which is shown in Figure A2 in Appendix A.
Columns (4) to (6) consider the same 500 meter buffer for transactions in the subsidized areas but different buffers for transactions in the unsubsidized area.
These alternative buffers are drawn in Figure A10 in the Appendix A.

The first three columns of Table 3 introduce three additional techniques that are usu-

ally implemented to enhance the comparability between subsidized and unsubsidized
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areas. The first column features DiD with propensity-score reweighting (A. Smith &

E. Todd, 2005; Aker, 2010; Wang, 2013; Chen et al., 2022), the second implements a bor-

der regression discontinuity instead of a difference-in-differences (Holmes, 1998; Black,

1999; Bayer et al., 2007; Turner et al., 2014), and the third one estimates a difference-in-

discontinuities design (Grembi et al., 2016; Butts, 2023). Similarly to the border estimates

discussed in the previous paragraph, all three point estimates in Columns 1 to 3 of Ta-

ble 3 are much smaller in absolute value than the benchmark obtained for the whole

city. Again, this is consistent with larger contamination as a result of higher re-sorting

between more homogeneous units.

Finally, we also estimate the effect using the difference-in-differences with the popu-

lar “ring approach” to construct the control group (Di Tella & Schargrodsky, 2004; Kline

& Moretti, 2014a; Butts, 2022; Myers & Lanahan, 2022). This methodology consists of

using “control areas” which are further away from the areas targeted by the policy. If

the degree of heterogeneity between subsidized and unsubsidized grows with distance

from the border, sorting and thus contamination should decrease, and according to our

formula, the DiD estimate should increase in absolute value. Columns 4, 5 and 6 in

Table 3 present DiD estimates for 500-1000, 1000-1500 and 1500-2000 meter rings, re-

spectively. These estimates grow in absolute value with the distance from the border,

thus confirming the hypothesized pattern.

This ring approach can identify the true effect of the policy on subsidized areas as

long as the spillovers (i.e. reallocation) are zero after a certain distance from the border

(Clarke, 2017; Butts, 2022; Myers & Lanahan, 2022). There is evidence that these dis-

tances can be quite large in some contexts. Clarke (2017) finds that the spillovers of text

messaging bans extend at least 30km from the policy border. Myers and Lanahan (2022)

establish the range of no spillovers as being beyond the 40th or 60th percentile of their

distribution of technological distance across firms and inventors. This requirement of

no spillovers after a certain distance may thus not hold in many contexts because of two

difficulties, which are present in our study. First, natural (sea, mountains) or human-

made (park, highway) constraints may limit the distance after which one can define the

control group. In our context, we study a coastal city, and the sea restricts the distance of
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the rings we can build, as shown in Figure A10 in Appendix A. For instance, only 10%

of our unsubsidized transactions are beyond 2,100 meters from the border. Second, as

noted by Butts (2022), when policies are large enough to induce the re-sorting of agents

throughout the entire city, spillover-free areas may well not exist.

4.3 Difference-in-Differences with Heterogeneous Effects

Finally, we explicitly introduce heterogeneity in our difference-in-differences estimator

by interacting the DiD term in the border specification with an index of price differences

between both sides of the border.

Figure A8 in Appendix A illustrates how we compute the index that measures price

differences across the border. We start by defining a large number of equidistant points

along the border. Then draw a 500-meter circle around each of those points and com-

pute the median price per square meter for each side of the border with the transactions

falling within that circle (left panel of Figure A8). Taking the difference between these

two median prices within each circle yields a scalar value that measures the hetero-

geneity in housing prices across the border around that point. The final step consists

of attaching, to each housing transaction, a weighted average of those scalars. In this

final step we compute, for each transaction, a weighted average of the scalars along the

border for which the sold property lies within the respective 500-meter circle around

the point. The weights are the inverse of the distance between the transaction and the

relevant border points. We standardize the resulting index by subtracting its average

and dividing it by its standard deviation. We generically refer to this index as the “het-

erogeneity index” along the paper.

The second column of Table A1 in Appendix A presents the estimate of the interaction

between the DiD term and the heterogeneity index. Each additional standard deviation

in the heterogeneity of the border increases the absolute value of the DiD estimate of the

effect of the tax break by 55 USD per square meter. This is a huge magnitude given our

benchmark DiD estimate of 181 USD for the whole city and a pre-policy average price

of 1,112 USD in the 500-meter buffer. Figure A9 in Appendix A plots the relationship

between the DiD estimate and the border heterogeneity index implied by that estimate.
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Note that the 95% confidence interval for the DiD estimate in that figure includes the

zero for all the values in the bottom half of the distribution of the heterogeneity in-

dex.

Overall, all results in Section 4 show that DiD estimates of the price effects of a place-

based policy depend on the control group chosen for comparison. This pattern is consis-

tent with the framework introduced in Section 2. There should be less re-sorting in re-

action to lower prices when subsidized and unsubsidized units are very heterogeneous,

thus minimizing the contamination effect. Importantly, the framework emphasizes that

the differences in the estimates do not come only from having heterogeneous treatment

effects but from biased estimates. Next, we complement these findings by solving for a

specific estimated model that allows us to separately measure the contamination effect.

Consistent with the reduced-form evidence in this section, we show that contamination

does indeed correlate positively with both the degree of homogeneity across the border

and with diversion ratios. Recovering contamination for the whole city further allows

us to quantify the level of bias in the benchmark DiD estimate for this policy.

5 Structural Model

In this section we introduce a specific model of real-estate transactions across neighbor-

hoods in a single city. The model is static and housing is assumed to be homogeneous.

Households may get different utility from the generic housing unit (GHU) in differ-

ent neighborhoods because of local exogenous amenities, which can vary over time.

The demand side of the model consists of a discrete-choice framework with households

choosing the neighborhood in which they want to buy the GHU. The supply side of

the model consists of an upward-sloping, log-linear housing supply for each neighbor-

hood.

5.1 Demand

Households make a discrete and exclusive choice regarding the neighborhood in which

they are buying a GHU in Montevideo. This discrete set of geographical areas is com-

plemented by an outside option consisting of buying a GHU in the localities belonging
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to the broader metropolitan area of Montevideo. Potential buyers of a GHU compare the

utility of their options using Equation 8, and choose the option that yields the highest

indirect utility.

Vijt = V (AMjt, Pjt, ϵ̃ijt) (8)

The first argument of the indirect utility function is the neighborhood amenity term

AMjt. Examples of such could be time-invariant such as distance to the coast or major

public infrastructure, or time-variant such as restaurants, shops, or public transporta-

tion schedules. The second argument, Pjt, is the price per square meter of a generic

housing unit in neighborhood j at time t. ϵ̃ijt denotes the unobserved preferences of

consumer i at time t for neighborhood j.

We parameterize the indirect utility function with the following linear function:

V (AMjt, Pjt, ϵijt) = Aj +Bt − αPjt + ξjt + ϵ̃ijt = δjt + ϵ̃ijt (9)

Amenities AMjt are the sum of a fixed component Aj , a city-wide time-varying com-

ponent Bt, and a term ξjt that varies over time at the neighborhood level and is unob-

servable to the econometrician. We use a nested logit model Berry, 1994, that allows for

controlling for correlated unobserved heterogeneity across neighborhoods within nests.

We define ϵ̃ = ζint + (1 − σ) × ϵijt, where σ with 0 < σ ≤ 1 is the nesting parameter.

ζint is common to all products in nest n. We assume ζint + (1− σ)× ϵijt follows a Type-1

Extreme Value (T1EV) distribution. Note that the within-nest correlation of utility levels

goes to one as σ approaches one, and that for σ = 0 the within-nest correlation goes to

zero and we return to the standard logit model.

The mean utility of the outside option is normalized to zero in every period (i.e. δ0t =

0 ∀ t). Following Berry (1994), this structure yields a linear equation with which one can

estimate the whole demand system. This is Equation 10, where sjt is the market share

of area j in the whole market at time t and s̄jnt is the market share of product j in nest n

in period t.
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ln(sjt)− ln(s0t) = δjt = Aj +Bt + ξjt − αPjt + σ ln(s̄jnt) (10)

5.2 Supply

Perfectly competitive agents sell a total of Qjt generic housing units in neighborhood j

at time t. The perfect competition assumption implies that housing prices - net of taxes

- equal marginal costs:

Pjt = (1− τjt) ∗MC(Qjt). (11)

Marginal costs increase with the number of houses sold. This reflects that land is

fixed in each neighborhood and, as a result of this scarcity, it becomes more valuable

with consumers’ willingness to pay for living in the neighborhood. Marginal costs also

have a fixed component Ljt capturing neighborhood-specific aspects such as the total

land available for housing construction as well as city-level aspects such as shocks to

construction costs.

Following previous literature, we parameterize the marginal cost function with the

following functional form (Saiz, 2010; Diamond, 2016; Baum-Snow & Han, 2023):

MC(Qjt) = Ljt ×Qη
jt (12)

Applying logarithms to both sides of Equation 12, and combining the resulting ex-

pression with Equation 11 yields the inverse housing supply curve:

lnPjt = lnLjt + ln(1− τjt) + η lnQjt (13)

5.3 Parallel Trends and Contamination in the Structural Model

Roth and Sant’Anna (2023) have shown that functional forms are one of the main chal-

lenges to parallel trends. Given that our structural model introduces a number of spe-

cific functional forms, many of them non-linear, and we want to use this model to eval-

uate difference-in-differences, we must check that it can satisfy parallel trends. We eval-
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uate this by simulating a series of equilibria of the model with alternative parameters.

We present the details of those simulations in Appendix C and here summarize the two

main conclusions we extract from that exercise.

The first conclusion from the simulation exercise is that our model allows for parallel

trends despite being highly non-linear in both its supply and demand side. The second

conclusion is that increasing the idiosyncratic variation in neighborhood amenities over

time leads to more violations of parallel trends but reduces the degree of contamination

of the DiD estimate. Intuitively, when neighborhoods experience large amenity shocks,

this generates large changes in housing prices over time, thus rejecting any parallel

trend test. On the other hand, as suggested by the decomposition formula in Section 2

and the reduced-form results in Section 4, those amenity shocks making neighborhoods

very different imply lower degrees of re-sorting in reaction to the subsidy, which means

less contamination and bias of the DiD estimate. These simulation results thus suggest

that in contexts of re-sorting there is a trade-off between satisfying the parallel trend

assumption and having no SUTVA violations.

6 Estimation

6.1 Demand

We estimate our demand model on a dataset that has a single quantity and price for

each combination of neighborhood and month-year. In order to control for differences

in housing quality across neighborhoods, prices are the neighborhood × month-year

fixed effects in a regression of transaction prices per square meter on those fixed ef-

fects plus a third-degree polynomial on the set of housing characteristics described in

Section 3.

The demand regressions presented in Table 4 estimate Equation 10. In these regres-

sions, the Aj and Bt amenity terms are captured by neighborhood and time fixed ef-

fects, respectively, and the time-varying amenities ξjt constitute the structural error.

Since equilibrium prices and within-nest shares are correlated with these unobserved

time-variant amenities, OLS estimates in Table 4 are inconsistent. We address this en-
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dogeneity by leveraging the introduction of the LVIS policy as a supply shifter to build

a set of four instruments. The first one is identical to the DiD term and indicates if the

neighborhood is benefited by the subsidy at time t. The other three instruments capture

how the supply shifter differentially affects each nest. These are formed by interacting

the DiD term with the number of other neighborhoods in the same nest receiving the

subsidy, their area in square meters, and the share of that area in the total area of the

nest.

Since time-varying neighborhood-specific amenities are the structural error of the

regressions, the identification assumption behind our set of instruments is that the

tax break did not impact those amenities conditional on the set of fixed effects. This

assumption deserves special attention given the abundant evidence on the effects of

new housing supply on neighborhood amenities (Baum-Snow & Marion, 2009; Rossi-

Hansberg et al., 2010; Diamond & McQuade, 2018), including evidence for the program

we are studying (González-Pampillón, 2022; Borraz et al., 2024). Two elements from

our context justify this assumption. First, as discussed in Section 3, we study a period

in which almost no housing project benefited by the subsidy had yet been completed.

Thus, we can expect no positive externalities of new construction during the period we

study. Second, although in principle housing prices in our period could incorporate

the future effect of new construction projects on amenities, this anticipation was limited

because the positive spillovers of new housing projects were highly localized (González-

Pampillón, 2022). This implies that the area benefited by the projects’ spillovers consti-

tuted a very small share of the total subsidized area. Furthermore, it would have been

very hard for market participants during our period to anticipate the location and tim-

ing of those projects that were not yet approved, which was necessary for capitalizing

the corresponding highly localized future spillovers.

In order to improve the strength of the first stage of our instruments, we implement a

three-step IV approach following Bayer et al. (2007) and Almagro et al. (2022). The first

step consists of obtaining regular IV estimates using the four instruments described

above. In a second step, we use these estimates to solve for the model’s equilibrium

when all time-varying parameters are set to zero. Finally, in the third step, we re-
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estimate demand using the four instruments used in the first step plus the equilibrium

prices and nest shares sj|n obtained in the second step. Note that these last two instru-

ments are obtained in an equilibrium in which amenities are set to zero and thus, by

construction, are not affected by changes in neighborhoods’ attractiveness.

The first OLS estimate of the price coefficient in Column 1 in Table 4 is positive, which

is consistent with prices being positively correlated with neighborhood amenities. In

Column 2 we add a rich set of neighborhood and month-year fixed-effects. These seem

to remove part of the endogeneity, because the price estimate is still negative but much

smaller, making it statistically indistinguishable from zero. Column 3 presents the esti-

mates corresponding to the first of the three steps described in the previous paragraph.

The final estimates, which are the ones we consider in the equilibrium counterfactuals

in the next section, are presented in Column 4. These include a negative and significant

coefficient for the price and a nested logit coefficient satisfying the restriction of being

between 0 and 1.

Table 4: Demand Estimation

Dependent Variable:

ln(sjt)− ln(s0t)

(1) (2) (3) (4)

Price per 100 Square Meters 0.02*** -0.00 -0.02*** -0.07***
(0.00) (0.00) (0.01) (0.01)

Within-Nest Log Market Share 0.66*** 1.00*** 0.72*** 0.69***
(0.01) (0.01) (0.27) (0.04)

Observations 2,646 2,646 2,646 2,646
Method OLS OLS IV Simulated IV
Fixed Effect - Geography - Neighborhood Neighborhood Neighborhood
Fixed Effect - Time - Year × Month Year × Month Year × Month
K-P 1st stage F 0.71 21.6

Source: Authors’ calculations using housing transaction data from the National Registry Office in Uruguay and
matched data on property characteristics from the country’s national cadaster.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are provided in parentheses. All four regressions esti-

mate Equation 10 at the neighborhood × month-year level. The first independent variable, price per 100 square
meters, are obtained as the neighborhood × month-year fixed effects in a regression of transactions prices per
square meter on those fixed effects plus a third-degree polynomial on housing age, area in square meters, dis-
tance to the coast, and four variables from the cadaster describing construction quality. In Column (3), the
instrumental variable regression features four instruments. The first of those is identical to the DiD term and
indicates if the neighborhood is being subsidized at time t. The other three instruments capture how the supply
shifter differentially affects each nest. These are formed by interacting the DiD term with: the number of other
neighborhoods in the same nest receiving the subsidy, their area in square meters, and the share of their area in
the total area of their respective nest. The IV regression in Column (4) uses the same instruments of Column (3)
plus two additional ones. These are the equilibrium price and within-nest log market share for each neighbor-
hood × month-year combination in a simulated equilibrium of the estimated model. See Subsection 6.1 for more
details on that simulation.
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6.2 Supply

We calibrate the two parameters of Equation 13, one of them externally and the other in-

ternally. We calibrate τjt externally using González-Pampillón (2022)’s estimate on the

LVIS subsidy representing 20% of the final housing price. We internally calibrate the

inverse housing supply elasticity η by matching the moment estimated in the reduced-

form. This procedure of internal calibration mirrors the one implemented by Berger

et al. (2022) in their study of market power in the US labor market. We set η such that

the there is an exact match between our benchmark reduced-form DiD estimate of -

181 (Table 2 in Section 4) and its structural equilibrium counterpart. We obtain that

structural equivalent of the reduced-form DiD by calculating the analogous double dif-

ference but with the equilibrium prices of the model instead of data. This matching

procedure yields a inverse supply elasticity of η = 0.33.7

7 Counterfactuals

In this section, we use the estimated model to solve for a set of counterfactual equilibria

and achieve three goals. First, we decompose a structural equivalent of our DiD esti-

mate into the three components presented in Section 2. This allows us to quantify the

degree of contamination in this DiD estimate, which is indicative of the degree of bias

in the benchmark reduced-form DiD estimate for the whole city. Second, we recover

the incidence of the subsidy in terms of lower housing prices of the subsidized areas

according to the model and contrast it with the one obtained considering the bench-

mark reduced-form DiD estimate. Third, we show that, as suggested by our decompo-

sition formula in Section 2 and by the variety of reduced-form estimates in Section 4,

neighborhood-level contamination is negatively correlated with the degree of hetero-

geneity between subsidized and unsubsidized areas, and positively correlated with di-

version ratios.
7This calibrated parameter implies a much more elastic housing supply compared to available esti-

mates (Saiz, 2010; Alves, 2021; Baum-Snow & Han, 2023). Note that ours is a monthly-level elasticity
referring to property-owners’ decisions to sell their houses. This implies that we look at a very short-
term selling decision. In contrast, the available estimates in the literature are measured over two or three
decades and focus on new housing units, which take more time to produce and sell compared to the
selling decision we study.
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7.1 DiD Decomposition and the Incidence of the Subsidy

We solve for the equilibrium of the model at the monthly level, thus mirroring the struc-

ture of our data. This procedure takes as inputs the IV-estimated demand parameters

and the calibrated supply parameters presented in the previous section. It also uses

as inputs the amenities and marginal costs of the neighborhoods, which we obtain as

the residuals from the housing demand and supply equations, respectively. We focus

our equilibrium comparisons on the period after the subsidy was introduced and eval-

uate the counterfactual equilibrium prices and quantities when the subsidy is set to

zero. Analogously to the reduced-form DiD, the structural DiD is the double differ-

ence between prices in the subsidized and unsubsidized areas with and without the

subsidy.

Table 5 presents the results of the decomposition of the DiD term and the incidence

of the subsidy. The second column has the results using the structural model and the

first one has the reduced-form counterparts, when available. We have an equilibrium

for each of the 32 months of the “post” period, so we report average results for all

periods. Also, structural results for the whole city correspond to the average of all

neighborhoods. The two DiD terms of the first row are identical by construction, since

we use this moment to calibrate the inverse housing supply elasticity parameter.

The five rows in the center of Table 5 present the decomposition of the DiD term

following Equation 4. The ATT term is the difference in the average equilibrium prices

of the subsidized neighborhoods with and without the subsidy. The autarky term is the

change in the average equilibrium prices across subsidized neighborhoods due to the

introduction of the subsidy but without allowing for re-sorting between neighborhoods.

We then calculate the re-sorting term as the difference between the ATT and the autarky.

This re-sorting effect in Table 5 is large, indicating that the reduction in housing prices in

the subsidized neighborhoods would have been much larger if buyers had not reacted

to the policy by re-sorting into these areas.

The contamination term is the most important, since it measures the difference be-

tween the DiD term and the ATT. This term can be thought of as the structural counter-

part of the bias of the reduced-form estimate. We obtain the contamination term as the
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difference in the average equilibrium prices of unsubsidized neighborhoods with and

without the subsidy. The existence of a contamination of around a quarter of the ATT

in Table 5 indicates that the DiD term substantially underestimates the impact of the

policy on the prices of the targeted neighborhoods.

Table 5: Decomposition of DiD Results Using the Structural Model

Reduced-Form Structural

DiD −181 −181

ATT −242
Autarky −404

Re-Sorting 162
Contamination −61

Contamination/ATT 25.2%

Incidence 59.2% 79.1%

Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: The DiD reduced-form estimate is taken from Column (3) of Ta-

ble 2 and corresponds to the regular DiD regression with neighborhood and
month-year fixed effects, and controlling for the third-order polynomial of
housing characteristics. The structural DiD coincides with the reduced-form
estimate by construction. The structural ATT, autarky, sorting, and contam-
ination terms are computed as the average difference in the prices of a set
of neighborhoods in an equilibrium with the subsidy with respect to one
without it. The structural ATT computes that difference for the set of sub-
sidized neighborhoods only. The structural autarky term computes the dif-
ference for the same set of neighborhoods but with a subsidized equilibrium
in which households are not allowed to re-sort across neighborhoods. The
structural re-sorting term is the difference between ATT and autarky. The
structural contamination considers the same difference as the ATT but for
unsubsidized neighborhoods instead of subsidized ones.

The last row of Table 5 shows that the existence of substantial contamination has large

implications in terms of the conclusions on the incidence of the policy that one would

obtain following either the reduced-form DiD (first column) or the structural ATT (sec-

ond column). We calculate the incidence as the effect on the prices of the subsidized

neighborhoods divided by the subsidy.8 While the incidence according to the structural

model is 79%, the one calculated using the reduced-form DiD is 20 percentage points

lower.

We illustrate the relevance of our incidence result by looking at the price faced by an

average consumer buying a housing unit in this city. The average price of houses in

subsidized areas in the pre-period was 90,000 USD. If the subsidy had had an incidence

8We obtain the amount of the subsidy by applying the 20% rate over the price that results from eval-
uating the unsubsidized inverse supply curve of the neighborhoods belonging to the subsidized area at
the quantities for those neighborhoods in the equilibrium with the subsidy.
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of 100%, implying that was entirely translated to consumers, it would have implied

a saving of 18,000 dollars. However, tax breaks typically are not entirely reflected in

prices, and it is therefore an important economic question to establish which share of

the tax break reaches its potential beneficiaries. In our context, a researcher guided

by the reduced-form estimate of the incidence (59.2%) would have concluded that our

consumer saved around 10,649 dollars. However, once contamination is considered,

the incidence of 79.1% implies a savings of 14,238 dollars. The difference between both

estimates of the incidence is 3,589 dollars, which amounts to 24.0% of Uruguay’s GDP

per capita in 2011, the year the policy was introduced.

7.2 Determinants of Contamination and Bias

The previous analysis showed that contamination can lead to wrong conclusions on the

effect of a place-based policy. To guide applied work in other contexts, it is useful to un-

derstand when contamination may matter more and thus lead to wrong conclusions. We

next show that the joint consideration of our decomposition formula, reduced-form es-

timates, and structural decomposition results consistently indicates that contamination

increases with the intensity of demand-side re-sorting, which in turn correlates with the

similarity between subsidized and unsubsidized areas. In terms of guidance for applied

work, this implies that, conditional on having parallel pre-trends, applied researchers

should prefer comparisons between less homogeneous areas when place-based policies

may induce substantive re-sorting.

Figure 4 presents evidence of the positive correlation between contamination and

demand-side sorting. We plot, for every pair of subsidized and non-subsidized neigh-

borhoods along the border of the policy, the structural contamination as a share of ATT

against the heterogeneity index introduced in Section 4.9 Going back to the reduced-

form relationship between the border DiD estimate and the degree of heterogeneity

across the border presented in both Table 3 and Figure A9, the results in Figure 4 in-

dicate that contamination can explain why one may not reject the hypothesis that the

9The heterogeneity index introduced in Section 4 assigns a scalar to each transaction. To obtain a
neighborhood pair-level index, we calculate the average value of the index for all transactions lying inside
the area of the neighborhood pair.
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policy had zero effects when comparing very homogeneous areas.

Figure 4: Contamination and Border Heterogeneity
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Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: Each of the 13 dots in the figure represents one subsidized-unsubsidized neighborhood pair. These
are all the neighborhood pairs lying across the border of the policy. Figure A2 in the Appendix A pro-
vides a map of the neighborhoods with a focus on the border. The x-axis shows the average heterogeneity
index introduced in Section 4 for the transactions included in each pair’s area. The y-axis presents con-
tamination as a percentage of the ATT for each pair. Contamination is obtained as the difference in the
equilibrium housing prices in counterfactual scenarios with and without the subsidy for the unsubsidized
member of each pair of neighborhoods. The ATT is obtained as the same difference but for the subsidized
member of the pair. The straight red line represents the predicted value from a linear regression of the y-
variable on the x-variable. The shaded grey area around it represents the 95% confidence interval around
the predicted value.

The second piece of evidence, presented in Figure 5, focuses on the whole city, and

shows how contamination is strongly and positively correlated with diversion ratios.

Consistent with our simple decomposition formula, the correlation does not only have

the expected sign but it is also linear. Since we are looking at all neighborhoods and

months, we have enough pairs to estimate the regression equivalent of Figure 5, includ-

ing a rich set of controls. Table A2 in Appendix A shows robust and positive regression

coefficients when controlling for none, either, and both neighborhood and month × year

fixed effects.
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Figure 5: Contamination and Diversion Ratios
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Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: The dots in the figure represent all the subsidized-unsubsidized neighborhood pairs. The x-axis
shows the diversion ratio between the two products of the pair. Using the estimated demand system
presented in Table 4, the diversion ratio is calculated as the quotient between two partial derivatives, both
of taken with respect to the price of the subsidized member of the pair. The numerator of that quotient
takes the partial derivative of the demand of the unsubsidized member of the pair with respect to the
price of the subsidized member, and the denominator takes the partial derivative of the demand of the
subsidized member with respect to its own price. The y-axis presents the contamination as a percentage
of the ATT for each pair. Contamination is obtained as the difference in the equilibrium housing prices
in counterfactual scenarios with and without the subsidy for the unsubsidized member of each pair of
neighborhoods. The ATT is obtained as the same difference but for the subsidized member of the pair.
The straight red line represents the predicted value from a linear regression of the y-variable on the x-
variable. The shaded grey area around it represents the 95% confidence interval around the predicted
value.

Finally, our formula states that not only contamination but also ATT is correlated

with the intensity of demand-side substitution. Since the re-sorting term is part of the

ATT, more of it would lead to lower DiD estimates of the impact of the subsidy. Simi-

larly to Figure 4 above, Figure A13 in Appendix A shows that the absolute value of the

ATT effectively increases with the degree of heterogeneity between the neighborhoods

across the border. Although this relationship is not relevant as a source of bias, it may

still matter for applied work for two reasons. First, if ATT effects are heterogeneous

due to re-sorting, applied researchers focusing on very homogeneous areas would get

systematically lower estimates. Second, and more substantive, the identification of sub-

stantive re-sorting affecting the ATT can be normatively relevant, since the higher prices

caused by re-sorting may offset part of the benefits of the subsidy for incumbent house-
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holds.

8 Conclusion

Violations of the stable unit treatment value assumption (SUTVA) are a common threat

to the identification of the equilibrium effects of policies. Because of the often non-

random assignment of these policies, their study requires the use of quasi-experimental

methods, with the difference-in-differences method being one of the most important.

We discuss how estimates obtained by difference-in-differences may not recover the

equilibrium effect of policies in contexts where the re-sorting of agents changes the

equilibrium outcomes of non-targeted units. Since place-based policies are one of the

prominent examples of these types of policies, we illustrate how SUTVA violations can

have serious consequences in terms of the welfare impacts of large place-based inter-

ventions. We further provide guidelines for applied work to detect contexts in which

this might be more of a concern and to recover the true effect of the policy, subject to the

availability of supply and demand elasticity estimates.

We illustrate our methodological contribution by studying the impacts of a large

place-based policy aimed at boosting housing construction in lagging areas of Mon-

tevideo, Uruguay. Because of our methodological focus, our study does not constitute

a complete evaluation of the effects of this policy over time. Future work can address

a longer time perspective, where the policy may have induced dynamic responses in

housing supply, housing demand, and endogenous urban amenities, which are not

present in our short-run analysis, and can alter the overall conclusions on the impact

of the policy.
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Fajgelbaum, P. D., Morales, E., Suárez Serrato, J. C., & Zidar, O. (2019). State Taxes and

Spatial Misallocation. The Review of Economic Studies, 86(1), 333–376.

Ferman, B., & Pinto, C. (2019). Inference in Differences-in-Differences with Few Treated

Groups and Heteroskedasticity. The Review of Economics and Statistics, 101(3), 452–

467.

Feyrer, J., Mansur, E. T., & Sacerdote, B. (2017). Geographic Dispersion of Economic

Shocks: Evidence from the Fracking Revolution. American Economic Review, 107(4),

1313–1334.
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A Appendix: Figures and Tables

Figure A1: Visual Representation of Re-Sorting with Two or Multiple Areas
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Source: Authors’ own illustration.

Figure A2: Montevideo by Subsidy Status - 500m Buffer
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Source: Authors’ own illustration using official shapefiles from the Geomatic Service of Uruguay.
Notes: The thicker line shows the border of the policy and the thinner lines the neighborhood limits. We
defined neighborhoods using a spatial clustering algorithm, as explained in Subsection 3.3. In panel a),
the classification of neighborhoods into subsidized or unsubsidized follows the borders of the policy as
defined in official government documents. The figure further displays a 500 meter buffer around the
border of the policy.
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Figure A3: Average Years of Education by Census Tract
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Source: Authors’ own illustration using official shapefiles from the Geomatic Service of Uruguay and
microdata from the 2011 Uruguayan Census.
Notes: The tones of blue reflect the average years of education of the adult population living in each
“segmento censal”, an administrative unit comparable in size to a US census tract.
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Figure A4: Residualized Housing Prices by Subsidy Status - City-Wide
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Source: Authors’ calculations using housing transaction data from the National Registry Office in
Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: The graph plots, separately for transactions in the subsidized or unsubsidized areas, the average
residualized price in each year-month. This residualized price is obtained as the residual of a regression
of housing prices per square meter on a polynomial of degree three on transaction area in square meters,
building age in years, distance to the coast in meters, and indexes of construction category, construction
condition, type of ceiling, and if there is ongoing construction work on the property. The graph considers
all housing transactions in the City of Montevideo.
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Figure A5: Residualized Housing Prices by Subsidy Status - 500m Buffer Across the
Border
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Source: Authors’ calculations using housing transaction data from the National Registry Office in
Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: The graph plots, separately for transactions in the subsidized or unsubsidized areas, the average
residualized price in each year-month. This residualized price is obtained as the residual of a regression
of housing prices per square meter on a polynomial of degree three on transaction area in square meters,
building age in years, distance to the coast in meters, and indexes of construction category, construction
condition, type of ceiling, and if there is ongoing construction work on the property. The regression, and
subsequently the graph, only considers transactions which are less than 500 meters away from the border
of the policy. This 500 meter buffer is shown in Figure A2 in Appendix A.
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Figure A6: Monthly Differences in Housing Prices Between Subsidized and Unsubsi-
dized Areas Measured with Respect to One Month Before the Starting Date of the Policy
- City-Wide
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Source: Authors’ calculations using housing transaction data from the National Registry Office in
Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: The graph plots the estimated coefficients, with their 95% confidence interval, of all year-month ×
subsidy dummies in a regression of housing prices per square meter on a polynomial of degree three on
transaction area in square meters, building age in years, distance to the coast in meters, and indexes of
construction category, construction condition, type of ceiling, and if there is ongoing construction work
on the property. The regression, and consequently the graph, considers all housing transactions in the
city. The omitted fixed effect is the month-year combination just before the starting date of the policy.
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Figure A7: Monthly Differences in Housing Prices Between Subsidized and Unsubsi-
dized Areas Measured with Respect to One Month Before the Starting Date of the Policy
- 500m Buffer Across the Border
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Source: Authors’ calculations using housing transaction data from the National Registry Office in
Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: The graph plots the estimated coefficients, with their 95% confidence interval, of all year-month ×
subsidy dummies in a regression of housing prices per square meter on a polynomial of degree three on
transaction area in square meters, building age in years, distance to the coast in meters, and indexes of
construction category, construction condition, type of ceiling, and if there is ongoing construction work
on the property. The regression, and subsequently the graph, only considers transactions which are less
than 500 meters away from the border of the policy. This 500 meter buffer is shown in Figure A2 in
Appendix A. The omitted fixed effect is the month-year combination just before the starting date of the
policy.
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Figure A8: How Border Z-Scores are Computed
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Source: Authors’ own illustration.
Notes: The figure provides an illustration of the method we use to compute a measure of heterogeneity
along the border of the policy. The left panel shows how we compute the index of heterogeneity for a
particular point on the policy border. The right panel shows shows how we aggregate point indices for
individual properties. For more details on the calculation of this measure, see Section 4.

Table A1: Difference-in-Differences Regressions - Heterogeneity

Dependent Variable:

USD per Square Meter

(1) (2)

Post × Treated −61 −63
(38) (34)

Post × Treated × Z-Score - −55∗∗∗

(14)

Housing Characteristics ✓ ✓
Fixed Effect - Geography Neighborhood Neighborhood
Fixed Effect - Time Year × Month Year × Month
No. Obs 7,579 7,578
Data 500m Buffer 500m Buffer

Source: Authors’ calculations using housing transaction data from the Na-
tional Registry Office in Uruguay and matched data on property charac-
teristics from the country’s national cadaster.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the

neighborhood level and provided in parentheses. The “Housing Charac-
teristics” controls consist of a polynomial of degree three on transaction
area in square meters, building age in years, distance to the coast in me-
ters, and indexes of construction category, construction condition, type of
ceiling, and if there is ongoing construction work on the property. The 500
meter buffer restriction requires that the transaction is located less than 500
meter away from the border of the policy. This 500 meter buffer is shown
in Figure A2 in Appendix A. The Z-score measures the average difference
in housing prices between both sides of the border of the policy. For more
detail on the calculation of this index see Section 4.
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Figure A9: Estimated Treatment Effect as a Function of Heterogeneity
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Source: Authors’ calculations using housing transaction data from the National Registry Office in
Uruguay and matched data on property characteristics from the country’s national cadaster.
Notes: The graph plots the marginal effects, with their 95% confidence interval, for different values of the
Z-score, of the interaction of that score with the difference-in-differences term in the regression estimated
in Column (2) of Table A1. This regression controls for neighborhood and year-month fixed effects poly-
nomial of degree three on transaction area in square meters, building age in years, distance to the coast in
meters, and indexes of construction category, construction condition, type of ceiling, and if there is ongo-
ing construction work on the property. The regression is estimated using transaction located less than 500
meter away from the border of the policy. This 500 meter buffer is shown in Figure A2 in Appendix A.
The Z-score measures the average difference in housing prices between both sides of the border of the
policy. For more details on the calculation of this measure, see Section 4.
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Figure A10: Rings Around the Border of the Policy: Unsubsidized Area
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Source: Authors’ own illustration using official shapefiles from the Geomatic Service of Uruguay.
Notes: The thicker line shows the border of the policy and the thinner lines the neighborhood limits. Each
individual buffer covers the part of the unsubsidized area that is at most the distance indicated by the
respective value in bold from the policy border. Larger buffer sizes naturally nest smaller buffer sizes.
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Figure A11: Average Housing Prices by Subsidy Status - Structural Model

1000

1500

2000

2010 2011 2012 2013 2014
Date

P
ric

e 
pe

r 
S

qu
ar

e 
M

et
er

 (
U

S
D

)

Subsidy Status Subsidized Unsubsidized

Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: The graph plots, separately for neighborhoods in the subsidized or unsubsidized areas, the average
equilibrium prices for each year-month.
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Figure A12: Monthly Differences in Housing Prices Between Subsidized and Unsubsi-
dized Areas Measured with Respect to the Time Period One Month Before the Starting
Date of the Policy - Structural Model
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Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: The graph plots the estimated coefficients, with their 95% confidence interval, of all year-month ×
subsidy dummies of a regression of equilibrium housing prices on month-year × subsidy dummies. The
omitted fixed effect is the month-year combination just before the starting date of the policy.
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Table A2: Contamination and Diversion Ratio

Dependent Variable:

Contamination

(1) (2) (3) (4)

Diversion Ratio 2.57*** 2.77*** 2.51*** 2.70***
(0.07) (0.08) (0.06) (0.07)

Observations 18,240 18,240 18,240 18,240
Fixed Effect - Geography - Neighborhood - Neighborhood
Fixed Effect - Time FE - - Year × Month Year × Month

Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses.

The four columns present the estimation results of a regression of contamination, measured in US dollars,
on the diversion ratio. The observations in those regressions are all the possible pairs of subsidized-
unsubsidized neighborhoods. Contamination is obtained as the difference in the equilibrium housing
prices in counterfactual scenarios with and without the subsidy for the unsubsidized member of each
pair of neighborhoods. Using the estimated demand system presented in Table 4, the diversion ratio
is calculated as the quotient between two partial derivatives, both of taken with respect to the price of
the subsidized member of the pair. The numerator of that quotient takes the partial derivative of the
demand of the unsubsidized member of the pair with respect to the price of the subsidized member and
the denominator the partial derivative of the demand of the subsidized member with respect to its own
price. Standard errors are provided in parentheses.
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Figure A13: ATT and Border Heterogeneity - Structural Model
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Source: Authors’ calculations using counterfactual equilibrium exercises.
Notes: Each of the 13 dots in the figure represents a subsidized-unsubsidized neighborhood pair. These
are all the neighborhood pairs lying across the border of the policy.Figure A2 in the Appendix A provides
a map of the neighborhoods with a focus on the border. The x-axis shows the diversion ratio. Using the
estimated demand system presented in Table 4, the diversion ratio is calculated as the quotient between
two partial derivatives, both of taken with respect to the price of the subsidized member of the pair. The
numerator of that quotient takes the partial derivative of the demand of the unsubsidized member of the
pair with respect to the price of the subsidized member and the denominator the partial derivative of
the demand of the subsidized member with respect to its own price. The y-axis presents the normalized
ATT for the subsidized member of the pair. The ATT is obtained as the difference in the equilibrium
housing prices in counterfactual scenarios with and without the subsidy for the subsidized member of
each pair of neighborhoods. The normalization is performed by dividing by the average ATT across all
neighborhoods. The straight red line represents the predicted value from a linear regression of the y-
variable on the x-variable. The shaded grey area around it represents the 95% confidence interval around
the predicted value.
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B Appendix: Deriving the DiD Decomposition

The derivations for the approximation results of the generalized difference-in-differences

(DiD) given in Equation 5 and Equation 6 are given below.

We specify demand for housing in a neighborhood j in time-period t at a given vec-

tor of market prices pt to be given by Dj(pt). The inverse housing supply function in

neighborhood j in time-period t at quantity qjt is assumed to be given by P j
S(q

j
t ). Inverse

supply is thus only a function of within-neighborhood demand. Without loss of general-

ity, we assume that the policy of interest is a housing construction subsidy implemented

in neighborhood A while neighborhood B is not targeted by the policy.10 The implied

DiD empirical specification will always compare neighborhood A and neighborhood

B.

Furthermore, we assume that equilibrium changes can be approximated by partial

derivatives. We abstract away from any second- or higher-order effects. Please note that

period t = 1 reflects the pre-policy equilibrium. Period t = 2 indicates the “artificial”

time period in which the policy only affects the targeted neighborhood(s) in autarky.

Period t = 3 is then the new post-policy equilibrium.

B.1 One Subsidized and One Unsubsidized

In reaction to the subsidy, the price in neighborhood A drop from pA1 to pA2 . In reaction to

this exogenous change in (relative) prices, i.e. (pA2 −pA1 ), consumers in all neighborhoods

re-evaluate their demand choices. The final change in equilibrium housing quantity in

neighborhood A is given by Equation A1, and in neighborhood B by Equation A2.

qA3 − qA2 ≈ ∂DA

∂pA
× (pA2 − pA1 ) (A1)

qB3 − qB2 ≈ ∂DB

∂pA
× (pA2 − pA1 ) (A2)

Inserting these changes in equilibrium quantities into the local inverse housing sup-

10In the traditional difference-in-differences (DiD) literature, neighborhood A would be considered the
“treated unit” and neighborhood B would be the “control unit”.
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ply equations, one can compute the changes in equilibrium prices.

pA3 − pA2 ≈∂PA
S

∂qA
× (qA3 − qA2 )

≈∂PA
S

∂qA
× ∂DA

∂pA
× (pA2 − pA1 )

(A3)

pB3 − pB2 ≈∂PB
S

∂qB
× (qB3 − qB2 )

≈∂PB
S

∂qB
× ∂DB

∂pA
× (pA2 − pA1 )

(A4)

Equation A3 highlights three terms that determine the final price change in neighbor-

hood A. First, it depends on the subsidy’s “autarky” effect, i.e. (pA2 − pA1 ). Second, it

is also determined by how price-sensitive housing demand in neighborhood A is with

respect to the local price. Third, the responsiveness of local inverse supply also scales

the change in final prices.

Similar to above, the size of the final price change in neighborhood B again depends

on the the subsidy’s autarky effect in neighborhood A, and on the responsiveness of

local inverse supply in neighborhood B. What however links the two neighborhoods is

the partial derivative of demand for neighborhood B housing with respect to the price

in neighborhood A. This partial derivative is a direct measure of demand substitution

patterns between the two neighborhoods. If consumers do not consider these neigh-

borhoods to be substitutes, this partial derivative is equal to zero. Thus the local price

neighborhood B does not change. If consumers on the other hand consider the two

neighborhoods to be substitutes, this partial derivative is positive. The price in neigh-

borhood B would then also change in reaction to the subsidy, despite the policy’s scope

being limited to neighborhood A.

Inserting these two expressions for final price changes into the generalised version of

the DiD estimator given in Equation 4, we arrive at Equation 5.
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β̂DiD = (pA2 − pA1 ) + (pA3 − pA2 )− (pB3 − pB2 )

≈ (pA2 − pA1 )+

+ (pA2 − pA1 )×
∂PA

S

∂qA
× ∂DA

∂pA

− (pA2 − pA1 )×
∂PB

S

∂qB
× ∂DB

∂pA

≈ (pA2 − pA1 )×
[
1 +

∂PA
S

∂qA
× ∂DA

∂pA
− ∂PB

S

∂qB
× ∂DB

∂pA

]
≈ (pA2 − pA1 )︸ ︷︷ ︸

Autarky in A

×
[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Re-Sorting Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Contamination Scaling

]
(A5)

with DRA,B being the diversion ratio between housing in neighborhood A and hous-

ing in neighborhood B. While the cross-price partial discussed previously is a non-

normalized measure of substitutability between neighborhoods A and B, the diversion

ratio is on the other hand a normalized measure of substitutability. It describes the ratio

between the change in demand for neighborhood B and the change in the demand for

neighborhood A when the price in A changes:

DRA,B =
∂DB/∂pA

∂DA/∂pA
(A6)

B.2 Two Subsidized and One Unsubsidized

Building on the insights gained from Subsection B.1, we now add a third neighborhood

C. Without loss of generality, we assume that neighborhood C is a neighborhood tar-

geted by the policy and thus also subsidized.

Similar to before, the analysis starts with final changes in housing demand. The struc-

ture of Equation A7 and others is very similar to above, with one exception. Because

housing supply in neighborhood C is now also subsidized by the policy, an additional

exogenous change in prices, i.e. (pC2 − pC1 ), needs to be accounted for when determining

final demand changes.
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qB3 − qB2 ≈ ∂DB

∂pA
× (pA2 − pA1 ) +

∂DB

∂pC
× (pC2 − pC1 ) (A7)

qA3 − qA2 ≈ ∂DA

∂pA
× (pA2 − pA1 ) +

∂DA

∂pC
× (pC2 − pC1 ) (A8)

qC3 − qC2 ≈ ∂DC

∂pA
× (pA2 − pA1 ) +

∂DC

∂pC
× (pC2 − pC1 ) (A9)

Using the inverse supply equation for neighborhood B, one can derive an expression

for the final price change in neighborhood B.

pB3 − pB2 =
∂PB

S

∂qB
× (qB3 − qB2 )

=
∂PB

S

∂qB
×

(
∂DB

∂pA
× (pA2 − pA1 ) +

∂DB

∂pC
× (pC2 − pC1 )

) (A10)

Using the same approach, we can derive an expression for (pA3 −pA2 ) using the inverse

supply equation for neighborhood A.

pA3 − pA2 =
∂PA

S

∂qA
× (qA3 − qA2 )

=
∂PA

S

∂qA
×

(
∂DA

∂pA
× (pA2 − pA1 ) +

∂DA

∂pC
× (pC2 − pC1 )

) (A11)

Inserting these two expressions for final price changes into the generalised version of

the DiD estimator given in Equation 4, one arrives at Equation A12.
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β̂DiD = (pA3 − pA1 )− (pB3 − pB1 )

= (pA3 − pA2 ) + (pA2 − pA1 )− (pB3 − pB2 )

≈ (pA2 − pA1 )

+ (pA2 − pA1 )×
(
∂PA

S

∂qA
× ∂DA

∂pA
− ∂PB

S

∂qB
× ∂DB

∂pA

)
+ (pC2 − pC1 )×

∂PA
S

∂qA
× ∂DA

∂pC

− (pC2 − pC1 )×
∂PB

S

∂qB
× ∂DB

∂pC

≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky in A

×
[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Direct Re-Sorting Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Direct Contamination Scaling

]

+ (pC2 − pC1 )︸ ︷︷ ︸
Autarky in C

×
[

∂PA
S

∂qA
× ∂DA

∂pC︸ ︷︷ ︸
Indirect Re-Sorting Scaling

− ∂PB
S

∂qB
× ∂DB

∂pC︸ ︷︷ ︸
Indirect Contamination Scaling

]

(A12)

The final rewriting of the generalised version of the DiD estimator yields the same

decomposition as in Subsection B.1 alongside one additional summand. The additional

summand however has a very similar structure with a re-sorting term and a contam-

ination term both scaling neighborhood C’s autarky effect. Given that neighborhood

C is not part of the implied DiD empirical specification which compares neighborhood

A and neighborhood B, we refer to these terms as “indirect re-sorting” and “indirect

contamination”. The indirect re-sorting, i.e. the autarky change in C multiplied by the

indirect re-sorting scaling, captures the effect on the price in neighborhood A from peo-

ple moving from A to C due to the subsidy-induced price decrease in the latter. This

moderates the price increase in neighborhood A attributable to direct re-sorting. The

indirect contamination, i.e. the autarky change in C multiplied by the indirect con-

tamination scaling, captures the effect on the price in neighborhood B as people move

from B to C due to the subsidy-induced price decrease in the latter. This increases the

contamination in neighborhood B as prices fall even further there.

Nota Bene If neighborhood C were actually unsubsidized one can set (pC2 − pC1 ) = 0,

and thus the entire derivation is identical to the situation described in Subsection B.1.
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B.3 Multiple Subsidized and Multiple Unsubsidized

Generalizing the results from Subsection B.2 to a setting with many subsidized and

unsubsized areas is straightforward. In Equation A12 one can see that the effect of one

additional subsidized neighborhood on the decomposed DiD estimator formula is one

additional summand. On the other hand, as noted above, any additional unsubsidized

neighborhood has no effect on the decomposition, as their effect is already captured

in the direct re-sorting term. Equation A13 thus captures the generalization to many

subsidized (and unsubsidized) neighborhoods. Please note that we are again only using

neighborhoods A and B to decompose the DiD estimator.

β̂DiD ≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky in A

×

[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Direct Re-Sorting Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Direct Contamination Scaling

]

+
∑
k∈K

(pk2 − pk1)︸ ︷︷ ︸
Autarky in k

×

[
∂PA

S

∂qA
× ∂DA

∂pk︸ ︷︷ ︸
Indirect Re-Sorting Scaling

− ∂PB
S

∂qB
× ∂DB

∂pk︸ ︷︷ ︸
Indirect Contamination Scaling

] (A13)

with K denoting the set of all neighborhoods subsidized by the policy of interest,

excluding neighborhood A.

In the main text, we use Equation A14. Equation A14 is a simple re-writing of Equa-

tion A13 in order to incorporate diversion ratios. Such reformulation allows for easier

comparison with Equation 5.

β̂DiD ≈ (pA2 − pA1 )︸ ︷︷ ︸
Autarky in A

×

[
1 +

∂DA

∂pA
× ∂PA

S

∂qA︸ ︷︷ ︸
Direct Re-Sorting Scaling

− ∂DA

∂pA
× ∂PB

S

∂qB
×DRA,B︸ ︷︷ ︸

Direct Contamination Scaling

]

+
∑
k∈K

(pk2 − pk1)︸ ︷︷ ︸
Autarky in k

×

[
∂PA

S

∂qA
× ∂Dk

∂pk
×DRk,A︸ ︷︷ ︸

Indirect Re-Sorting Scaling

− ∂PB
S

∂qB
× ∂Dk

∂pk
×DRk,B︸ ︷︷ ︸

Indirect Contamination Scaling

] (A14)

with K denoting the set of all neighborhoods subsidized by the policy of interest,

excluding neighborhood A.
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C Appendix: Trade-off between Parallel Trends

and Contamination

We simulate alternative cities with different fundamentals (amenities and marginal costs)

by introducing random variation in three types of shocks: a) the time invariant shocks

that represent the “base heterogeneity” across locations (terms depending on j), b) the

“time heterogeneity”, which are time shocks that affect all locations at the same time

(terms depending on t), c) the “idiosyncratic heterogeneity” shocks that vary by time

and locations (terms depending on jt).

For the case of amenities (AMjt) each of those three shocks is captured by a specific

random variable, γj , γt and τjt, and we define AMjt = γj + γt + τjt. Analogously, for

marginal costs (Ljt) we have Ljt = Lj + Lt + ϵjt. Table A3 presents the assumed distri-

butions for the six random variables.

Table A3: Simulation Setup - Random Variable Distributions

Variable Parameters
Base Heterogeneity γj ∼ N(0, σj) Lj ∼ logN(0, σj)
Time Heterogeneity γt ∼ N(0, σt) Lt ∼ logN(0, σt)
Idiosyncratic Heterogeneity τjt ∼ N(0, σjt) ϵjt ∼ logN(0, σjt)

We extract three main takeaways from the simulation exercise. First, our model al-

lows for parallel trends. We simulate the model for a specific set of parameters (σj =

0.5, σt = 0.3, σjt = 0.2) to show that, despite being very non-linear in both the demand

and the supply side, our model can produce parallel trends between subsidized and un-

subsidized areas. The top graph in Figure A14 suggests the presence of parallel trends

in a typical DiD graph while the bottom graph in Figure A14 presents the typical event

study test for parallel trends in the literature.
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Figure A14: Simulations for A Specific Set of Parameters (σj = 0.5, σt = 0.3, σjt = 0.2)
and Nesting Coefficient of 0.5
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The second takeaway is to characterize under which type and size of heterogeneity

our model rejects the parallel trends. To analyze this issue we perform simulations over

several values of the heterogeneity parameters. In these simulations, the variance for j

terms (σj) is limited to the set {0.5, 1..0}, while the other two variances (σt and σjt) can

vary along a grid from 0 to 1.5 (in 0.5 increments).

Figure A15 presents the results for σj = 1 and Figure A16 shows the results for σj =

0.5. For each of three levels of the nested logit nesting parameter (i.e. the plain σ in our

model), the upper panel shows the number of significant coefficients in a regression of

equilibrium prices on a set of interactions between time period and subsidy status and

including neighborhood and time fixed effects. In all of the upper panels the number

of parallel trend violations is relatively small. They tend to occur when the variation in

the jt dimension is large compared to the variation in t or, vice versa, when variation in

t is large compared to variation in jt.

Finally, the third takeaway is that there is a trade-off between parallel trends viola-
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tions and the contamination effect. The bottom graphs of the figures present the size of

the contamination effect as % of the ATT in these simulations. In line with our theoreti-

cal predictions, contamination is higher when the substitutability of same-nest products

is higher (as measured by higher nesting coefficients). In the lower panels, contamina-

tion is less with the lower values of the nest coefficient, but that comes at the cost of

more violations in parallel trends in the upper panels.

Figure A15: Parallel Trends and Contamination Effects in Simulations for σj = 1
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Figure A16: Parallel Trends and Contamination Effects in Simulations for σj = 0.5
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